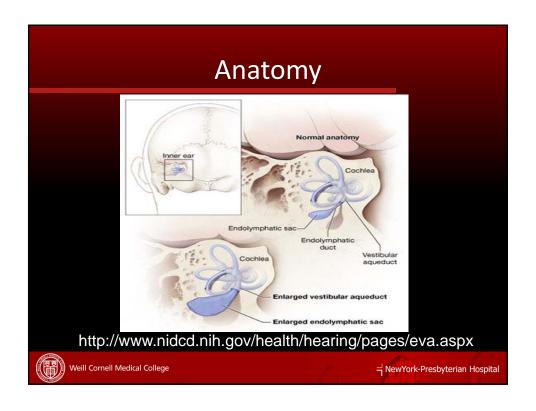


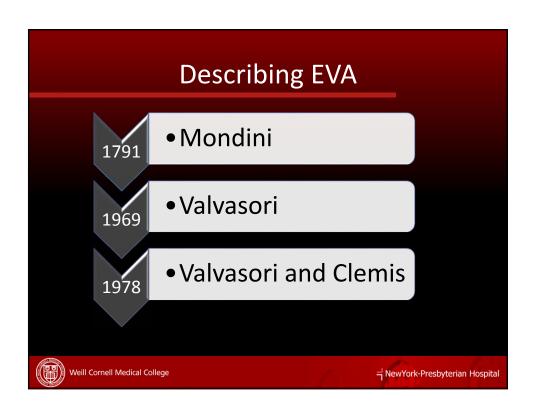
Advanced
Management of
Complex Cases:
Enlarged Vestibular
Aqueduct

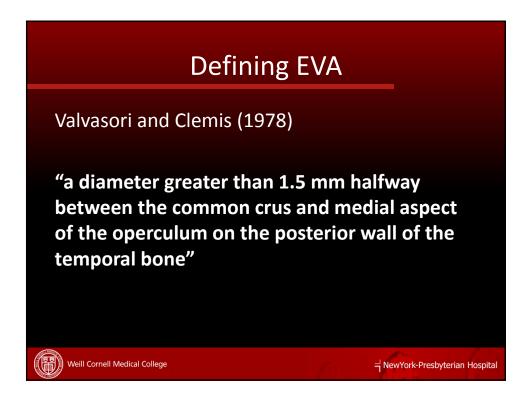
- Need Technical Support? Contact AudiologyOnline at 1-800-753-2150
- You must stay logged in for the duration of this course in order to be eligible to earn CEU credit.
- This course is offered for Continuing Education Units (CEUs) from AudiologyOnline if you are a CEU Total Access member.
- Be sure to take the exam following course completion to earn credit.

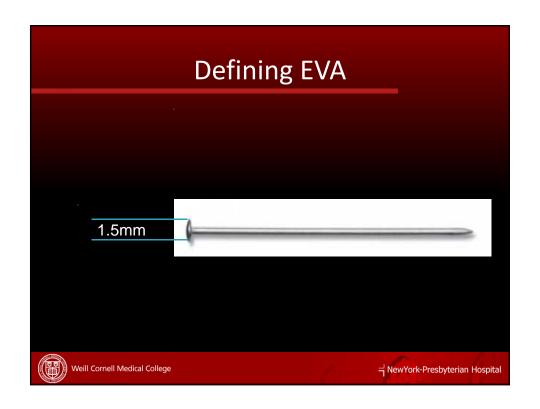
Advanced Management of Complex Cases: Enlarged Vestibular Aqueduct

Jennifer Wolf, AuD, CCC-A




 ☐ NewYork-Presbyterian Hospital


Agenda


- Definition of EVA
- Audiologic configuration and progression of hearing loss
- Theories describing cause of hearing loss
- Audiologic (Re)habilitation
- Cochlear implantation considerations
- Case study

Imaging options

- Diagnosis can be made by a radiologist with either Computed Tomography (CT) scan or Magnetic Resonance Imaging (MRI) scan
 - CT Scan
 - Vestibular aqueduct is identified
 - MRI
 - Endolymphatic duct as well as endolymphatic sac can be identified

 ☐ NewYork-Presbyterian Hospital

EVA is the <u>most common</u> inner ear anomaly identified on imaging for children with hearing loss

Development

Complete in Utero?

- Evidence that there is no O change in VA size postnatelly when comparing <u>average</u> measurements across children and adults
- Arrest in development causing the aqueduct to not elongate and form into a "j" shape

Continued Growth?

 Some data suggests that the VA continues to grow postnatally in nonlinear fashion until a child is 3-4 years of age

 ☐ NewYork-Presbyterian Hospital

Statistics, for now...

- Prevalence of EVA is estimated to range from 1- 14% of in populations with SNHL
- Bilateral to unilateral ratio 2:1
- Female to male ratio 3:2

Associated Congenital Disorders

- Pendred syndrome
 - Autosomal recessive
 - Mutations on gene SLC26A4 resulting in hypothyroidism and goiter
 - Combination of thyroid dysfunction and EVA
- CHARGE syndrome
- Branchio-oto-renal syndrome

☐ NewYork-Presbyterian Hospital

POLL QUESTION 1

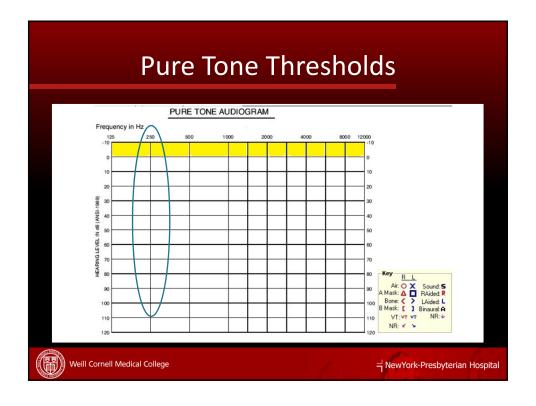
POLL QUESTION 2

POLL QUESTION 3

Clinical Presentation

Hearing Concerns

- Failure on hearing screening(s)
- Reduced auditory responsiveness in daily activities, in some cases following minor head trauma
- Reported difficulty hearing
- Speech and language delay/ concerns


Vestibular Symptoms

- delayed ambulation in childhood
- episodes of vertigo with variance in length
- disequilibrium

Audiologic Test Battery

- Tympanometry
- Acoustic reflexes
- Pure tone thresholds
- Word recognition ability
- Otoacoustic emissions
- VEMP

Type and Configuration of HL

- Type of Hearing Loss
 - Conductive, Mixed AND Sensorineural hearing loss have
 <u>ALL</u> been reported in the literature
 - Conductive hearing loss or mixed components are most likely to occur in the in low frequencies (250 Hz and 500 Hz)
- Configuration of Hearing Loss
 - Most commonly reported are are down sloping, flat, and reverse cookie bite

Degree of HL

- Degree of hearing loss ranges from mild to profound
- Hearing loss is reported to potentially fluctuate, rapidly change or gradually change over time with no specific incident.
- Hearing loss can also range from deafness in childhood to stable hearing loss into adult life

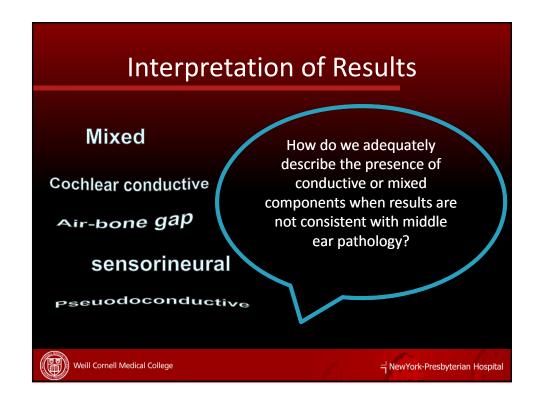
☐ NewYork-Presbyterian Hospital

Word Recognition Ability

- Often word recognition will decline with progression of hearing loss
- Word recognition may be poorer than expected when compared to conductive or mixed components of middle ear origin

Additional Measurements

- Tympanometry
 - Expected to be within normal limits
- Acoustic Reflexes
 - Ipsilateral reflexes (tonal or BBN) can be present with conductive and/or mixed components
- Otoacoustic emissions


☐ NewYork-Presbyterian Hospital

Vestibular Testing

- Vestibular Evoked Myogenic Potential (VEMP)
 - Present responses despite air-bone gaps
 - Potential for HIGH Ocular VEMP <u>amplitude</u> and LOW Cervical VEMP <u>threshold</u>

Differential Diagnosis				
_				
Test	Result	Rule Out		
Tympanometry	Normal	ETD, fluid		
Ipsi Reflexes	Likely present *	most ossicular concerns		
OAEs	Present/Absent	likely absent in cases of true middle ear dysfunction		
VEMP	Present; can be lower in threshold than normal, and greater in amplitude	middle ear dysfunction		
Weill Cornell Medical College		┤ NewYork-Presbyterian Hos		

Interpretation of Results

- Describe conductive components and air bone gaps identified on pure tone testing
- Indicate that despite conductive components, results are **not** consistent with middle ear pathology.

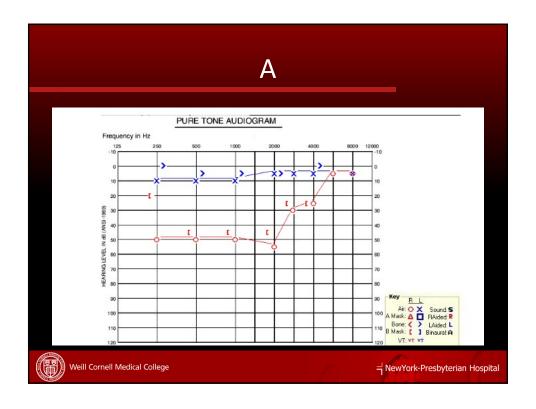
 ☐ NewYork-Presbyterian Hospital

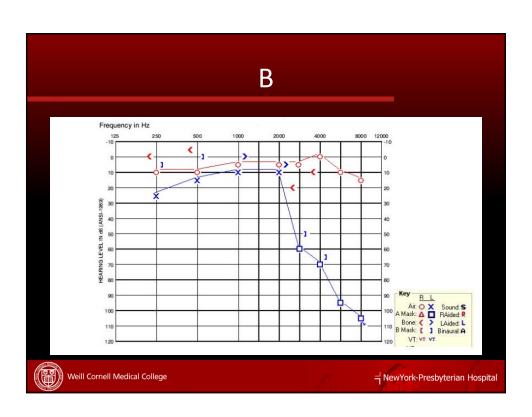
Precipitating Factors

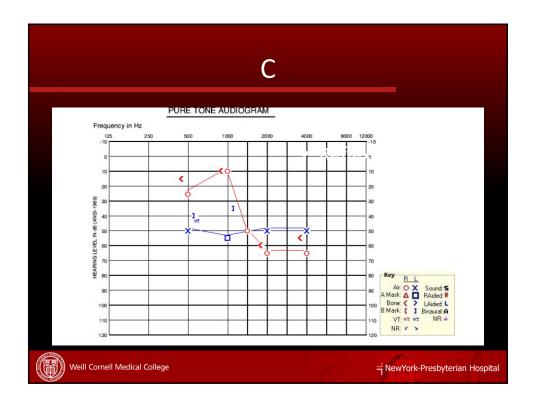
- Head trauma, barotrauma, high fever, noise exposure, URI can all increase risk for sudden changes in hearing
- Minor head trauma does NOT always cause a further decline in hearing
 - ONE THIRD of patients reported a sudden decline in hearing following minor head trauma

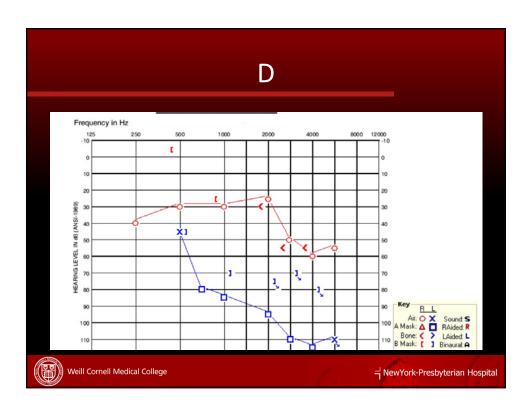
Are there predictive values?

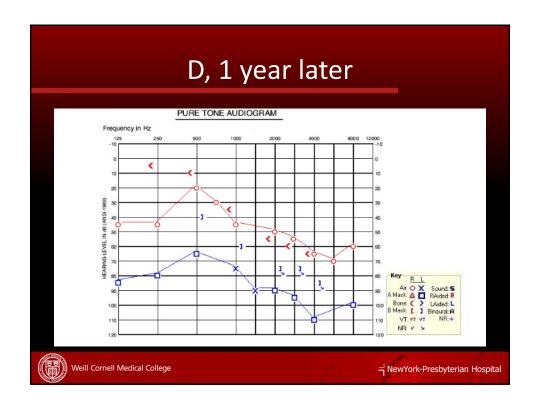
- In the majority of studies, vestibular aqueduct size or endolymphatic sac size is **not** correlated with degree of hearing loss
- Madden et al, 2003 reported that the mean VA at the operculum was significantly larger in patients with a progressive hearing loss versus those with a stable or fluctuating loss

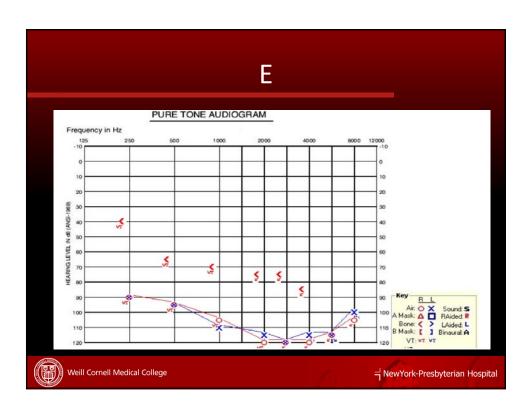

 ☐ NewYork-Presbyterian Hospital

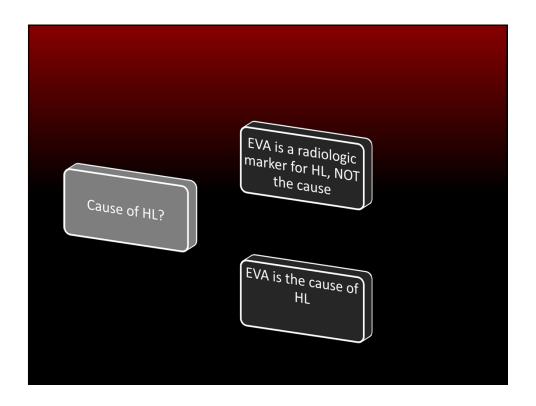

Clinical Implications


MONITOR, MONITOR, MONITOR!!!


- Use all diagnostic tools possible in order to help a physician make the correct diagnosis and avoid unnecessary surgery (such as middle ear exploration)
- Counsel patients and families on potential causes for further hearing loss, and activities they may wish to avoid

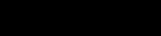






POLL QUESTION 4

POLL QUESTION 5


Theories of Hearing Loss

Pressure wave theory I

- Conductive/ mixed losses can be explained by back pressure of perilymph and endolymph causing decreased stapes mobility
- Potential reason for perilymph "gushers"

Pressure wave theory II

Greater pressure shifts from intracranial space cross through VA and damage the inner ear, specifically hair cells.

Weill Cornell Medical College

Theories of Hearing Loss

Electrolyte Imbalance Theory

- Proposed that endolymphatic sac itself disturbs homeostasis
- Large volumes of endolymph could overwhelm the the ion pump mechanism of the stria vascularis.

Hyperosmolar Fluid Reflux Theory

 Endolymphatic duct fluid which contains hyperosmolar fluid can reflux easily through the larger aqueduct and cause damage to the inner ear.

 ☐ NewYork-Presbyterian Hospital

Theories of Hearing Loss

Middle Ear Involvement

- Ossicular Deformities
- Stapes Fixation
 - Middle ear exploration due to mixed hearing loss revealed fixated stapes footplate and perilymphatic "gusher" in the presence of EVA

Theories of Hearing Loss

Third Window Lesion

- Defined as any abnormal entrance to the inner ear
- Sound energy is shunted out of the cochlea, resulting in poorer air conduction and improved bone conduction

 ☐ NewYork-Presbyterian Hospital

Treatment for Decline in Hearing?

- Endolymphatic sac shunt, occlusion or obliteration surgery
- Corticosteroid treatment

Audiologic (Re)habilitation Options

- Preferential Seating
- FM system (sound field or personal)
- Hearing Aids
- Cochlear Implant

OR

 Combination of the above, depending on degree of hearing loss and word recognition ability

 ☐ NewYork-Presbyterian Hospital

Cochlear Implant Considerations

- Mixed components should not rule out CI candidacy
- Surgical
 - Electrode array (dependent on other anatomical considerations, progression of HL)
 - Reported "gushers"
 - Postoperative recovery

Cochlear Implant Programming

- Potential for fluctuations in impedances, thereby impacting voltage compliance limitations
- Fluctuation in preferred loudness measurements
- May want to control each ear independently (volume, sensitivity) in case of fluctuations

 ☐ NewYork-Presbyterian Hospital

Cochlear Implant Performance

Children

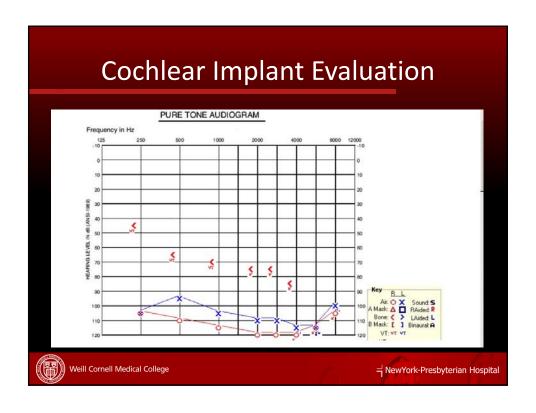
 In many cases, children will have acquired some speech and language before implanted, therefore may have limited time without auditory input and potential for improved performance

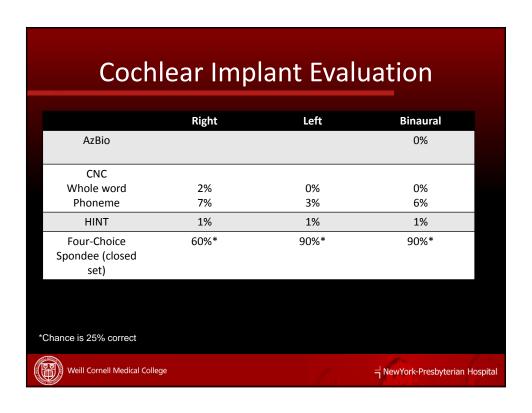
Adult

- Many adults hold on tightly to even a small amount of hearing and may be fearful to be implanted
- Duration of hearing loss and previous use of amplification can impact post-operative performance

Case Study

Cochlear Implantation with bilateral EVA



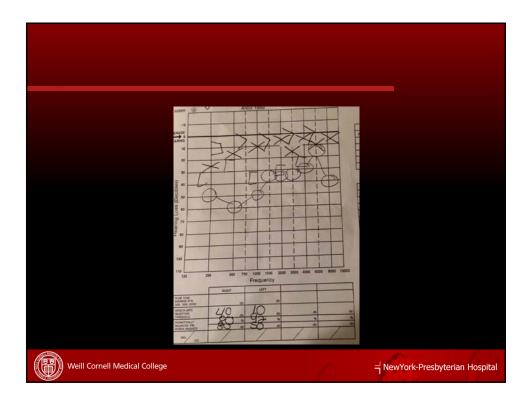

 ☐ NewYork-Presbyterian Hospital

Case

- 40 y.o male with reported bilateral progressive hearing loss first identified when he was 4
- Noted poorer hearing always in the LEFT ear from childhood
- Consistent use of amplification on the RIGHT and inconsistent use on the LEFT; access to speech on the RIGHT with environmental and VT on LEFT
- First identified with EVA at the age of 38

Implantation and Activation

- RIGHT Advanced Bionics HiRes90k Advantage/ HiFocus1j electrode
 - No resistance on insertion; no evidence of a "gusher" per physician report
- Activation
 - Naida Q70 sound processor, HiResOptimaS processing strategy



 ☐ NewYork-Presbyterian Hospital

Post-Op Performance

	Pre-Op	3 month	1 year
AzBio		95%	98%
			74% (10 dB SNR)
CNC			
Whole word	2%	84%	88%
Phoneme	7%	91%	95%
HINT	1%	100%	100%
		95% with 10 dB SNR	DNT
Four-Choice	60%	100%	
Spondee			
BKB-SIN			5.5 dB SNR

Summary

- Hearing loss can present as conductive, mixed, or sensorineural in nature
- · Hearing loss can remain stable, fluctuate or rapidly change
- When EVA is suspected, use all clinical tools to help decipher a conductive or mixed component of middle ear origin from inner ear origin
- Review potential precipitating hearing loss factors when with patients and families
- Monitor hearing, hearing aid performance and/ or cochlear implant programming <u>closely</u> for potential fluctuations

