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ABSTRACT

A model is given for the analysis of differences among pure-tone thresholds within subjects associated, for example with inter-ear, test/retest, pre-/post-treatment changes.

Variability in a Single Trial — The Legitimacy of Threshold Change: The documentation of a change in hearing loss is necessary for professional management of patients in differential diagnosis, rehabilitation and compensation. In the realm of compensation, one major agency (the Occupational Safety and Health Administration known as OSHA) specifies the characteristics of what constitutes an abnormal audiogram as well as what constitutes a significant threshold shift. This criterion is defined as a “ ... change in threshold relative to the baseline audiogram an average of 10 dB or more at 2000, 3000 and 4000 Hz in either ear (OSHA Noise Standard
; OSHA, 1983
). This definition is further substantiated in a letter published in May, 2003 (Fairfax, 2003
). However, the National Institute for Occupational Safety and Health (NIOSH, 1972
; NIOSH, 1978
; NIOSH, 1980
) uses the term “significant Threshold Shift (STS)” to define a change relative to the baseline audiogram of 15 dB or more at any test frequency 500 through 6000 Hz in either ear, and the same shift for the same ear on immediate retest. The lack of agreement may partially reflect the lack of understanding among federal regulators about the rigorous underlying principles of the measurement of auditory thresholds. From these fundamental mathematical principles, the derivation of what constitutes a significant threshold shift is a simple matter of combination of probabilities. Yet, in spite of this elegant  simplicity, professionals also seem to be reluctant to document the significance of threshold shifts that they observe every day in clinical evaluations.

The Measurement of Threshold: The measurement of the variability of pure-tone thresholds is easily available from published research.  We selected for purposes of illustration of the application of this model, an intra-subject variability characterized by a standard-deviation ( 1 ) of 5 dB (e.g. Chermak and associates, 1983
).  Therefore, under that assumption, a z-score of 1 = 5 dB, and a z-score of 2 would be associated with a 10-dB difference.  From a z/Fz table, one can determine the probability that a score equivalent to any given z-score can be attributed to chance alone.  This probability is called the p-value.  If that p-value is less than the clinician’s a priori critical p-value [an event we identify as a success], then the threshold difference is significant and the p-value indicates the chances that a clinician is in error in asserting that a change has taken place.  This erroneous rejection of the null hypothesis [that no real change has taken place] is known by statisticians as a Type I error.

Unfortunately, the underlying assumption of this series of relationships already presents some difficulties for the clinician.  Most clinicians, in the course of determination of pure-tone threshold in accordance with specifications promulgated by existing standards of care
,
,
, determine thresholds in 5-dB increments.  The current ANSI standard2 (in its Appendix B) indicates that if a test subject shows variable threshold, a limitation should 

be set on the acceptable variation.  No standard exists for specifying that variation, but these standards rely on published reports indicating standard deviations for air-conducted signals ranging from 5 to 10 dB.[image: image2.wmf]
1  Figure 1. Normal-distribution curve (red continuous line) fitted to a distribution of actual threshold changes.
One of the underlying assumptions of the normal distribution is that of a continuous distribution of values.  The use of an increment in threshold determination violates this assumption, but it is not immediately, nor intuitively clear whether this violation is very serious.  It does, however, introduce the need for making additional assumptions, as illustrated in Figure 1.  For example, if the standard deviation is 5 dB, a shift in ideal threshold of 2.50001 dB would reveal itself as a 5-dB shift, and so would a shift of 7.49999 dB.   For the purposes of the present discussion we have chosen to include the extremes of the borders.  Thus, the evaluation of a threshold change of 5 dB was not taken as 1.5 standard deviations, nor 1 standard deviation, but at its extreme limit of 0.5 standard deviations.  This is a conservative assumption, which tends to make a 5-dB change not significant.

Variability in a Single Trial — Clinical Questions: The kind of clinical question which occurs to the clinician in the interpretation of audiometric data has a direct impact on the relevance of the statistical model she [in deference of the majority of clinical audiologists] must use.  One type of question might be an interest in whether the threshold has worsened, with no interest in whether it has improved.  In the course of a clinical project, perhaps the question of interest is whether the threshold has improved [for example secondary to some type of intervention that can only have beneficial outcomes].  Such questions share the underlying premise that mandates the use of one-tailed interpretations of the changes.  Under these conditions, as soon as the clinician has chosen the proportion of the time she is willing to make an erroneous assertion [known as the critical p-value], then she must relate that probability to the chances that any given change of that magnitude in that direction may occur by chance.  For example, if one error out of one hundred is acceptable [a critical p-value of 0.01], then a change in the desired direction exceeding 2.33 standard deviations is necessary (for example, see any number of tables of cumulative normal probabilities of z/Fz Tables such as those found in texts of basic statistics
, 
).  Clinically, in order to meet that criterion, the clinician would expect to see a change of more than  two standard-deviations in the desired direction or more than 10 dB.

Clinicians frequently may be interested only in any change from some baseline, for better as well as for worse.  Under these conditions, the clinician must reference her critical p-value to a two-tailed analysis.  If the clinician must maintain an error rate of one in one hundred or less, then the expectation [two-tailed] will be fulfilled only when the threshold changes by 2.58 standard deviations, which would manifest itself, by a change of 15 dB or more.

Variability in a Single Trial — Ranges Expressed as Single Values: As shown in Figure1, because of the incremental nature of threshold determination, a change expressed as a single value really includes many values within a range defined by half the distance to the increments on either side of that value. Table 1 identified the relevant issues in tabular format.


2.   Table 1:  Relationships Among Distributions and Increment Size of Changes in Threshold.
Any change in threshold will be noted as a single value by the clinician.  That one value, shown in column 1 of  Table 1 indicates a change that is somewhere in the range or interval shown in column 2.  Column 3 identifies the number of standard deviations indicated by a change that is at the extreme value of  the interval shown in Column 2.  Column 4 shows the percent of the population of values that is subtended from a z-score of 0 [the baseline threshold equivalent to a 0-dB change] to the value shown in Column 3.  Column 5 shows the percent of the population of values in a normal distribution, which falls within the interval described in Column 2.  The values in Column 6 apply to a one-tailed comparison.  The cumulative values from Column 6 may be used, then to define the p-value for one-tailed types of clinical questions for simple events.  By simple events we simply mean a single threshold at a single frequency.  The last column in  Table 1 (Column 6) is the cumulative percent of the population.  Thus 31% of the population is in the range of a change of -5 dB or lower, and 31% of the population lies in the range of +5 dB or less.  The rest of the population (38%) lies outside the 5 dB threshold change.

Variability in Multiple Trials: In the most common clinical assessment, an audiogram is generated which shows thresholds obtained at a number of frequencies.  If the pure-tone audiogram consists of thresholds obtained at seven frequencies [exempli gratia, octave frequencies from 500 through 8,000 Hz, along with 3,000 and 6,000 Hz], then the audiogram may be modeled as consisting of seven trials of the simple event having the characteristics described in the above section concerning variability in a single trial.  The relevant clinical question, then, is not so much whether a single threshold obtained on a one-shot trial constitutes a significant change [one- or two-tailed] but whether the occurrence of such an event in the midst of several trials constitutes a significant change.   The number of trials that are used to observe a given event affects the probability associated with that event being observed by chance.  So, the clinician is seldom concerned with the probabilities that can be derived from the values shown in Table 1, but is more concerned with interpreting an audiogram.

In our assessment of audiometric threshold, we thought it useful to identify two types of questions which may arise [in addition to, and in combination with, the questions already raised].  One type of question would be that even though a single-event change of 5 dB is not significant, what about the occurrence of that 5-dB change in 4 out of 5 trials?  Loosely translated, one would ask something like: Given that a patient’s thresholds are unchanged except for 5 dB worsening at four of the five test frequencies, has that patient’s hearing worsened?  A complementary question which may arise clinically is whether an event which in its simple state is not significant, when it is observed a certain number of consecutive times, does that run of trials constitute a significant event.  For example, one may ask, given that a 5-dB shift for the worse in threshold is not significant, what about a shift which occurs not just at any four of the five frequencies, but at four adjacent [or consecutive] test frequencies?

The first clinical question raised above may be answered best from the binomial probability model.  Either the patient’s responses meet or they do not meet the criterion of 50% detection of stimuli presented at a given level [for definition of threshold].  The determination of threshold then meets the definition but there are only two possible outcomes during the stimulus presentation [response or no response].

In the comparison of changes across audiograms [two audiograms] for a given patient, a success as defined above, either will take place or it will not take place for each possible trial [test frequency].  Moreover, each trial is independent and the presence of a success at any given trial [or test frequency] will not, in and of itself, affect the probability of a success on any other trial.  We therefore suggest that the binomial distribution may be used for this comparison.  The binomial formula which relates the probability of a certain number of successes [a shift of a certain magnitude] for a given 
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(Equation 1)

number of trials is as follows:

Where:

n = the number of trials or test frequencies

k = the number of successes [the total number of thresholds equal-to or exceeding the clinicians criterion for all the frequencies tested (e.g. the number of 5-dB threshold shifts observed in the audiogram)].



j= n - k


p = the probability of a success for a simple, one-trial event meeting the clinician’s criterion



q = 1 - p
To adjust probabilities for successive trials or runs one adds to the above binomial formula [See Equation (1)] the odds of events happening in succession [see Appendix A].  This is not unlike adjusting probabilities for drawing red marbles (with replacement) out of a sac containing red marbles as well as black marbles, when the proportion of total red marbles and black marbles in the sac is known.

For the combination of different numbers of frequencies tested (4 through 8), we have generated tables of p-values for threshold changes [one-tailed and two-tailed] for successive runs as well as for binomial combinational probabilities for threshold changes of 5, 10, 15 and even 20 dB.

Table 2:  One-tailed P-Values

	n
	dB
	Criterion
	k = Number of frequencies showing a -dB change out of n test frequencies

	
	
	
	0
	1
	2
	3
	4
	5
	6
	7
	8

	4
	5
	Any k
	1
	0.7714
	0.3633
	0.0903
	0.0091
	
	
	
	

	
	
	Adjacent k
	1
	0.7714
	0.2268
	0.0497
	0.0091
	
	
	
	

	
	10
	Any k
	1
	0.2416
	0.0244
	0.0011
	0.0000
	
	
	
	

	
	
	Adjacent k
	1
	0.2416
	0.0128
	0.0006
	0.0000
	
	
	
	

	
	15
	Any k
	1
	0.0246
	0.0002
	0.0000
	0.0000
	
	
	
	

	
	
	Adjacent k
	1
	0.0246
	0.0001
	0.0000
	0.0000
	
	
	
	

	
	20
	Any k
	1
	0.0009
	0.0000
	0.0000
	0.0000
	
	
	
	

	
	
	Adjacent k
	
	0.0009
	0.0000
	0.0000
	0.0000
	
	
	
	

	5
	5
	Any k
	1
	0.8419
	0.4892
	0.1745
	0.0341
	0.0048
	
	
	

	
	
	Adjacent k
	1
	0.8419
	0.2863
	0.0700
	0.0153
	0.0028
	
	
	

	
	10
	Any k
	1
	0.2923
	0.0390
	0.0027
	0.0001
	0.0000
	
	
	

	
	
	Adjacent k
	1
	0.2923
	0.0169
	0.0009
	0.0000
	0.0000
	
	
	

	
	15
	Any k
	1
	0.0306
	0.0004
	0.0000
	0.0000
	0.0000
	
	
	

	
	
	Adjacent k
	1
	0.0306
	0.0002
	0.0000
	0.0000
	0.0000
	
	
	

	
	20
	Any k
	1
	0.0012
	0.0000
	0.0000
	0.0000
	0.0000
	
	
	

	
	
	Adjacent k
	1
	0.0012
	0.0000
	0.0000
	0.0000
	0.0000
	
	
	

	6
	5
	Any k
	1
	0.8907
	0.5980
	0.2716
	0.0774
	0.0125
	0.0009
	
	

	
	
	Adjacent k
	1
	0.8907
	0.3416
	0.0903
	0.0216
	0.0047
	0.0009
	
	

	
	10
	Any k
	1
	0.3395
	0.0559
	0.0051
	0.0003
	0.0000
	0.0000
	
	

	
	
	Adjacent k
	1
	0.3395
	0.0211
	0.0011
	0.0001
	0.0000
	0.0000
	
	

	
	15
	Any k
	1
	0.0366
	0.0006
	0.0000
	0.0000
	0.0000
	0.0000
	
	

	
	
	Adjacent k
	1
	0.0366
	0.0002
	0.0000
	0.0000
	0.0000
	0.0000
	
	

	
	20
	Any k
	1
	0.0014
	0.0000
	0.0000
	0.0000
	0.0000
	0.0000
	
	

	
	
	Adjacent k
	1
	0.0014
	0.0000
	0.0000
	0.0000
	0.0000
	0.0000
	
	

	7
	5
	Any k
	1
	0.9244
	0.6883
	0.3723
	0.1373
	0.0325
	0.0044
	0.0003
	

	
	
	Adjacent k
	1
	0.9244
	0.3924
	0.1100
	0.0278
	0.0067
	0.0015
	0.0003
	

	
	10
	Any k
	1
	0.3837
	0.0748
	0.0085
	0.0006
	0.0000
	0.0000
	0.0000
	

	
	
	Adjacent k
	1
	0.3837
	0.0252
	0.0014
	0.0001
	0.0000
	0.0000
	0.0000
	

	
	15
	Any k
	1
	0.0426
	0.0008
	0.0000
	0.0000
	0.0000
	0.0000
	0.0000
	

	
	
	Adjacent k
	1
	0.0426
	0.0002
	0.0000
	0.0000
	0.0000
	0.0000
	0.0000
	

	
	20
	Any k
	1
	0.0016
	0.0000
	0.0000
	0.0000
	0.0000
	0.0000
	0.0000
	

	
	
	Adjacent k
	1
	0.0016
	0.0000
	0.0000
	0.0000
	0.0000
	0.0000
	0.0000
	

	8
	5
	Any k
	1
	0.9477
	0.7611
	0.4698
	0.2098
	0.0648
	0.0131
	0.0016
	0.0001

	
	
	Adjacent k
	1
	0.9477
	0.4394
	0.1293
	0.0341
	0.0086
	0.0021
	0.0004
	0.0001

	
	10
	Any k
	1
	0.4248
	0.0955
	0.0129
	0.0011
	0.0001
	0.0000
	0.0000
	0.0000

	
	
	Adjacent k
	1
	0.4248
	0.0293
	0.0017
	0.0001
	0.0000
	0.0000
	0.0000
	0.0000

	
	15
	Any k
	1
	0.0485
	0.0010
	0.0000
	0.0000
	0.0000
	0.0000
	0.0000
	0.0000

	
	
	Adjacent k
	1
	0.0485
	0.0003
	0.0000
	0.0000
	0.0000
	0.0000
	0.0000
	0.0000

	
	20
	Any k
	1
	0.0019
	0.0000
	0.0000
	0.0000
	0.0000
	0.0000
	0.0000
	0.0000

	
	
	Adjacent k
	1
	0.0019
	0.0000
	0.0000
	0.0000
	0.0000
	0.0000
	0.0000
	0.0000


Table 3:  Two-Tailed P-Values
	n
	dB
	Criterion
	k = Number of frequencies showing a -dB change out of n test frequencies

	
	
	
	0
	1
	2
	3
	4
	5
	6
	7
	8

	4
	5
	Any k
	1
	0.9785
	0.8398
	0.5048
	0.1449
	
	
	
	

	
	
	Adjacent k
	1
	0.9785
	0.6723
	0.3248
	0.1449
	
	
	
	

	
	10
	Any k
	1
	0.4365
	0.0890
	0.0086
	0.0003
	
	
	
	

	
	
	Adjacent k
	1
	0.4365
	0.0488
	0.0045
	0.0003
	
	
	
	

	
	15
	Any k
	1
	0.0487
	0.0009
	0.0000
	0.0000
	
	
	
	

	
	
	Adjacent k
	1
	0.0487
	0.0005
	0.0000
	0.0000
	
	
	
	

	
	20
	Any k
	1
	0.0019
	0.0000
	0.0000
	0.0000
	
	
	
	

	
	
	Adjacent k
	1
	0.0019
	0.0000
	0.0000
	0.0000
	
	
	
	

	5
	5
	Any k
	1
	0.9918
	0.9254
	0.7115
	0.3669
	0.0894
	
	
	

	
	
	Adjacent k
	1
	0.9918
	0.7626
	0.4148
	0.2004
	0.0894
	
	
	

	
	10
	Any k
	1
	0.5118
	0.1354
	0.0193
	0.0014
	0.0000
	
	
	

	
	
	Adjacent k
	1
	0.5118
	0.0640
	0.0065
	0.0006
	0.0000
	
	
	

	
	15
	Any k
	1
	0.0605
	0.0015
	0.0000
	0.0000
	0.0000
	
	
	

	
	
	Adjacent k
	1
	0.0605
	0.0006
	0.0000
	0.0000
	0.0000
	
	
	

	
	20
	Any k
	1
	0.0023
	0.0000
	0.0000
	0.0000
	0.0000
	
	
	

	
	
	Adjacent k
	1
	0.0023
	0.0000
	0.0000
	0.0000
	0.0000
	
	
	

	6
	5
	Any k
	1
	0.9968
	0.9663
	0.8435
	0.5795
	0.2607
	0.0552
	
	

	
	
	Adjacent k
	1
	0.9968
	0.8316
	0.5048
	0.2559
	0.1237
	0.0552
	
	

	
	10
	Any k
	1
	0.5701
	0.1857
	0.0348
	0.0038
	0.0002
	0.0000
	
	

	
	
	Adjacent k
	1
	0.5701
	0.0789
	0.0086
	0.0009
	0.0001
	0.0000
	
	

	
	15
	Any k
	1
	0.0721
	0.0022
	0.0000 
	0.0000
	0.0000
	0.0000
	
	

	
	
	Adjacent k
	1
	0.0721
	0.0008
	0.0000
	0.0000
	0.0000
	0.0000
	
	

	
	20
	Any k
	1
	0.0028
	0.0000
	0.0000
	0.0000
	0.0000
	0.0000
	
	

	
	
	Adjacent k
	1
	0.0028
	0.0000
	0.0000
	0.0000
	0.0000
	0.0000
	
	

	7
	5
	Any k
	1
	0.9988
	0.9852
	0.9193
	0.7424
	0.4574
	0.1820
	0.0340
	

	
	
	Adjacent k
	1
	0.9988
	0.8794
	0.5736
	0.3114
	0.1579
	0.0763
	0.0340
	

	
	10
	Any k
	1
	0.6335
	0.2380
	0.0550
	0.0080
	0.0007
	0.0000
	0.0000
	

	
	
	Adjacent k
	1
	0.6335
	0.0936
	0.0106
	0.0011
	0.0001
	0.0000
	0.0000
	

	
	15
	Any k
	1
	0.0836
	0.0031
	0.0001
	0.0000
	0.0000
	0.0000
	0.0000
	

	
	
	Adjacent k
	1
	0.0836
	0.0009
	0.0000
	0.0000
	0.0000
	0.0000
	0.0000
	

	
	20
	Any k
	1
	0.0033
	0.0000
	0.0000
	0.0000
	0.0000
	0.0000
	0.0000
	

	
	
	Adjacent k
	1
	0.0033
	0.0000
	0.0000
	0.0000
	0.0000
	0.0000
	0.0000
	

	8
	5
	Any k
	1
	0.9995
	0.9936
	0.9599
	0.8515
	0.6332
	0.3519
	0.1253
	0.0210

	
	
	Adjacent k
	1
	0.9995
	0.9140
	0.6343
	0.3669
	0.1922
	0.0974
	0.0471
	0.0210

	
	10
	Any k
	1
	0.6825
	0.2908
	0.0794
	0.0142
	0.0017
	0.0001
	0.0000
	0.0000

	
	
	Adjacent k
	1
	0.6825
	0.1081
	0.0127
	0.0014
	0.0002
	0.0000
	0.0000
	0.0000

	
	15
	Any k
	1
	0.0950
	0.0041
	0.0001
	0.0000
	0.0000
	0.0000
	0.0000
	0.0000

	
	
	Adjacent k
	1
	0.0950
	0.0011
	0.0000
	0.0000
	0.0000
	0.0000
	0.0000
	0.0000

	
	20
	Any k
	1
	0.0037
	0.0000
	0.0000
	0.0000
	0.0000
	0.0000
	0.0000
	0.0000

	
	
	Adjacent k
	1
	0.0037
	0.0000
	0.0000
	0.0000
	0.0000
	0.0000
	0.0000
	0.0000


Because deciphering the above tables may not yield a limpid result, we illustrate usage which clinicians may find useful.

Example 1: 

Assumptions


1.  A clinician wishes to be wrong no more that 1 time in twenty or 5 times out of a hundred.  The accurate critical p-value for her interpretation is the 0.05 critical p-value.  In order to reach that  p-value , she would look for a p  0.05.


2.  The clinician wishes to know whether her treatment has caused an improvement in the patient’s auditory thresholds.  She is therefore interested in a one-tailed comparison [and by extension would be examining Table 2 pertinent to one-tailed probability values]. 


3.  The clinician has tested only the octave frequencies from 500 through 8,000 Hz.  Therefore, in each table she would be interested in the section identified by an n = 5 total number of frequencies tested.

Results:
The pure-tone thresholds at 1,000, 2,000, 4,000 and 8,000 Hz (k = 4 in Table 2) have shifted by 5 dB (dB = 5) each, showing an apparent improvement in auditory sensitivity.

Interpretation:
Since these are adjacent frequencies, the clinician looks up the appropriate p-values on the one-tailed table associated with a dB = 5 and a criterion of Adjacent k.  From the table in the column heading of k = 4, she notes that the probability of those four successive thresholds shifting by that much is 0.0153 and because the probability is less [numerically] than her chosen critical p-value, she can assert than a significant improvement has taken place.

Discussion:
Moreover, had any (criterion = Any k) four (k = 4) of the five test frequencies (n = 5) shifted by 5 dB (dB = 5), that combination of results would have also met her criterion and it would have been significant since the p-value of 0.0341 (from Table 2) is less than her chosen critical p-value of 0.05.  Had her clinical decision been entirely dependent on any shift as opposed to an improvement thus changing to a two-tailed comparison, she would have noted (from the table concerning two-tailed probabilities starting on page 13) that four such shifts out of the five test frequencies (k = 4; n = 5; dB = 5) would not have been significant [p = 0.3669 (criterion = Any k)].  For that matter, even four successive 5-dB shifts (criterion = Adjacent k) out of the five test frequencies also would not have been significant (p= 0.2004).

Conclusion

We have presented materials which could help objectify the interpretation of routine audiometric findings.  Because the uses to which such analyses may be applied are varied, and the impacts of certain interpretations may be at least just as varied, we have not presumed to dictate the acceptance of any one method of analyses [one tailed as opposed to two tailed], nor of setting the critical p-value for clinicians.  However, we do believe that, under some circumstances, clinicians may wish something more than the generalized guidelines contained in the appendix of, and therefore not part of the standard specifications promulgated by, the current ANSI standards2 [viz “…If the audiometer in use has a 5-dB-step attenuator, 10 dB is considered the outside limit attributable to causes other than hearing…”). Clinicians also should recognize that tangential variables such as psychophysical method, increment size, and earphone placement all will affect variability of the measurement.  The model proposed here may be useful given a consistency of test instrument and administration.  Different situations bring different levels of risks, and those are decisions best left to the individual clinician.

Appendix A
In order to understand the origin of the numbers in Tables 2 and 3, consider an example where we assume that an audiogram consists of thresholds obtained at four frequencies and that we are concerned with changes of +5 dB.  Table 4 shows the calculations necessary to find the p-values in Table 2.

First, we note from Table 1 that the single-frequency p-value is 0.3085.  This probability represents the probability of a success on any one of the four trials (test frequencies) and is noted at the top of Table 4.  The probability of a non-success, or failure, is 1 minus this probability (i.e. 0.6915) and is noted in the next line.

The main body of Table 4 shows the following:


Column 1 shows all 16 possible combinations of successes and failures for four trials.


Column 2 shows the number of successes represented in the associated combinations in Column 1.


Columns 3 through 7 show the probabilities of each of the combinations in Column 1, organized by the number of successes.  For example, the probability of obtaining the combination SSSS is (0.3085)(0.3085)(0.3085)(0.3085) = 0.0091 and the probability of obtaining each of the combinations SSSF, SSFS, SFSS, or FSSS (3 successes) is (0.3085)(0.3085)(0.3085)(0.6915) = 0.0203.

Then, to obtain the binomial probability that there are k successes in the 4 trials, we add all the probabilities in each column.  The results in Table 4 are shown for each k in the box labeled “Binomial Probability Distribution.”  For example, the probability that the number of successes equals 4 [P(k=4)] is equal to 0.0091, the only value in the k=4 Column, and the probability that the number of successes equals 3 [P(k=3)] is equal to the sum of the four 0.0203's in the column for k=3, which yields a probability of 0.0812.

Finally, we must obtain the p-values for k=0 to 4.  The bottom five lines of Table 4 show which probabilities from the binomial probability distribution must be included.  For example, the p-value for k=4 successes equals P(k=4), the p-value for k=3 successes equals P(k=4) + P(k=3), and the p-value for k=2 successes equals P(k=4) + P(k=3) + P(k=2).  Thus, the p-value for k=4 equals 0.0091, which is the probability that four shifts of 5 dB could occur when in fact no improvement has really occurred.

Table 5 (for successes in a row) is similar to Table 4 except that the second column of the main body of the table indicates the longest run in the pattern.  This change causes some of the probabilities to be shifted in the body of the table, which results in lower probabilities for some k values than those of the binomial case.

	Table 4

	P(success) = P(S) = 0.3085

	P(failure) = P(F) = 0.6915

	Binomial Case:
	successes in any order
	

	Pattern
	k = number of successes
	Probs

for k=4
	Probs.

for k=3
	Probs.

for k=2
	Probs.

for k=1
	Probs.

for k=0

	SSSS
	4
	0.0091
	
	
	
	

	SSSF
	3
	
	0.0203
	
	
	

	SSFS
	3
	
	0.0203
	
	
	

	SSFF
	2
	
	
	0.0455
	
	

	SFSS
	3
	
	0.0203
	
	
	

	SFSF
	2
	
	
	0.0455
	
	

	SFFS
	2
	
	
	0.0455
	
	

	SFFF
	1
	
	
	
	0.102
	

	FSSS
	3
	
	0.0203
	
	
	

	FSSF
	2
	
	
	0.0455
	
	

	FSFS
	2
	
	
	0.0455
	
	

	FSFF
	1
	
	
	
	0.1020
	

	FFSS
	2
	
	
	0.0455
	
	

	FFSF
	1
	
	
	
	0.1020
	

	FFFS
	1
	
	
	
	0.1020
	

	FFFF
	0
	
	
	
	
	0.2286

	

	sums of columns yields probabilities for individual k’s
	Binomial Probability Distribution

	
	P(k=4)
	P(k=3)
	P(k=2)
	P(k=1)
	P(k=0)

	
	0.0091
	0.0812
	0.2731
	0.4080
	0.2286

	Table of p-values
	

	P(k  0)
	1.0000
	included
	included
	included
	included
	included

	P(k  1)
	0.7714
	included
	included
	included
	included
	

	P(k  2)
	0.3633
	included
	included
	included
	
	

	P(k 3)
	0.0903
	included
	included
	
	
	

	P(k 4)
	0.0091
	included
	
	
	
	


	Table 5

	P(success) = P(S) = 0.3085

	P(failure) = P(F) = 0.6915

	Run Case:
	successes in a row
	

	Pattern
	k = number of successes in a row
	Probs

for k=4
	Probs.

for k=3
	Probs.

for k=2
	Probs.

for k=1
	Probs.

for k=0

	SSSS
	4
	0.0091
	
	
	
	

	SSSF
	3
	
	0.0203
	
	
	

	SSFS
	2
	
	
	0.0203
	
	

	SSFF
	2
	
	
	0.0455
	
	

	SFSS
	2
	
	
	0.0203
	
	

	SFSF
	1
	
	
	
	0.0455
	

	SFFS
	1
	
	
	
	0.0455
	

	SFFF
	1
	
	
	
	0.1020
	

	FSSS
	3
	
	0.0203
	
	
	

	FSSF
	2
	
	
	0.0455
	
	

	FSFS
	1
	
	
	
	0.0455
	

	FSFF
	1
	
	
	
	0.1020
	

	FFSS
	2
	
	
	0.0455
	
	

	FFSF
	1
	
	
	
	0.1020
	

	FFFS
	1
	
	
	
	0.1020
	

	FFFF
	0
	
	
	
	
	0.2286

	

	sums of columns yields probabilities for individual k’s
	Consecutive Run Probability Distribution

	
	P(k=4)
	P(k=3)
	P(k=2)
	P(k=1)
	P(k=0)

	
	0.0091
	0.0406
	0.1771
	0.5446
	0.2286

	Table of p-values
	

	P(k  0)
	1.0000
	included
	included
	included
	included
	included

	P(k  1)
	0.7714
	included
	included
	included
	included
	

	P(k  2)
	0.2268
	included
	included
	included
	
	

	P(k 3)
	0.0497
	included
	included
	
	
	

	P(k 4)
	0.0091
	included
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