If you are viewing this course as a recorded course after the live webinar, you can use the scroll bar at the bottom of the player window to pause and navigate the course.

This handout is for reference only. It may not include content identical to the powerpoint. Any links included in the handout are current at the time of the live webinar, but are subject to change and may not be current at a later date.
Medical/Surgical Management of Conductive Hearing Loss

Robert Battista, M.D.
Jill Messina, Aud

Ear Institute of Chicago, LLC
Hinsdale, IL

Outline

- Characteristic audiometric findings
- Unusual causes of air-bone gap
- Surgical treatment
- Medical treatment
Conductive Hearing Loss: Causes

External Canal
- Cerumen
- Foreign body
- Exostosis
- Osteoma
- External otitis
-
-

Tympanic
- Perforation
- Tympanosclerosis
- Medialized drum
- Lateralized drum

Middle Ear
- Otitis media
- Ossicular discontinuity
- Otosclerosis
- Tympanosclerosis
- Malleus fixation

Third Window
- Semicircular canal dehiscence
- Enlarged vestibular aqueduct
- X-linked deafness
- Paget disease
Carhart Notch (Carhart Effect)

- Carhart: 1950
 - Otosclerosis
 - Maximal 2 kHz (0.5 - 4 kHz)
- Found in:
 - Otosclerosis
 - Incudostapedial joint dislocation
 - Malleus/Incus fixation
Carhart Notch (31%) (Perez A. O & N. 30:1033-; 2009)

Carhart Notch (32%) (Perez A. O & N. 30:1033-; 2009)
Carhart Notch (37%) (Perez A. O & N. 30:1033-; 2009)

Carhart Notch (Perez A. O & N. 30:1033-; 2009)

CONTINUED™
Incidence of 2kHz Bone Dip

Incidence, %

- Stapes Fixation: 31
- I/S Joint Separation: 26
- Malleus Fixation: 30

Kashio, A. Arch Oto H N Surg.137(3):236-240; 2011

Depth of 2kHz Bone Dip

dB

- Stapes Fixation: 17.3
- I/S Joint Separation: 18.5
- Malleus Fixation: 16.3

Kashio, A. Arch Oto H N Surg.137(3):236-240; 2011
Malleus Fixation

(Martin, C. O & N. 30:165-169; 2009)

Ossicles
Malleus Fixation

Case 1: C. D.
- 6 y.o F
- “Failed” school hearing evaluation
- Whitish mass behind ear drum
Kurz Footplate Shoe

Case 2: P. B.

- 56 y.o. M
- Referred for treatment of otosclerosis
Case 2: P. B.

- Dizziness when using telephone in left ear for 16 years
Normal Air Conduction

Merchant S. O & N. 29:282-289;2008

Third Window Lesions Air Conduction

Merchant S. O & N. 29:282-289;2008
Case 2 (C.B. Postop)

Enlarged Vestibular Aqueduct

Medical Management
Air-Bone Gap, Now What?

- Cross check testing
 - Case History, Otoscopy, Impedance Testing
- Additional testing
- Equipment considerations
 - Are there clogs or breaks in insert earphone tubing?
 - Are the inserts or headphones placed correctly?
- Refer to ENT

Audiologists’ Role

- After following up with physician…
- Patient’s conductive hearing loss may be resolved
- Patient may continue to present with conductive or mixed hearing loss
 - How can audiologists help?
Assistive Device Options

• Hearing Aids
 • ITE, BTE, RIC, Bone Conduction

Photos courtesy of Starkey

Assistive Device Options

• Implanted Bone Anchored Hearing Solution
• Cochlear Americas
• Oticon Medical

Photos courtesy of Cochlear Americas and Oticon Medical
Hearing Aid Style Considerations

• Degree of hearing loss
 • May need larger hearing aid to accommodate larger receiver
 • However, today’s powerful receivers are smaller than years ago

• Chronic drainage from ear
 • Conventional BTE with standard earmold will be more durable

• Size and shape of ear canal
 • Surgically altered or not

Earmold Impressions

• Use multiple otoblocks if needed to ensure that ear canal is completely sealed
Earmold Impressions

• Make sure impression can be passed through the narrowest part of the canal when being removed

Programming Considerations

• Entering bone conduction values into programming software will change targets
• Will accommodate for air-bone gap
THANK YOU!

Questions:
Robert Battista
Jill Messina
(630) 789-3110
r-battista2@northwestern.edu
jbrodinski@chicagoear.md