Otoprotective Agents for Prevention of Acquired Hearing Loss in Humans

Presented by:

Colleen G. Le Prell, PhD
Associate Professor at University of Florida

Moderated by:

Brian Fligor, ScD
Instructor, Otology and Laryngology, Harvard Medical School
Director of Diagnostic Audiology, Children's Hospital Boston

Expert e-Seminar

TECHNICAL SUPPORT
Need technical support during event?
Please contact us for technical support at
800-753-2160

CEUs
CEU Total Access members can earn continuing education credit for participation in this course. Be sure to take the outcome measure following course completion to earn your CEUs, or contact us for more information or assistance: 800-753-2160
Noise-Induced Hearing Loss
Webinar Series 2013

Acceptable Strategies for Prevention of Noise- and Music-Induced Hearing Loss
Brian J. Fligor, ScD

Tinnitus Assessment in Young Musicians
Frank Wartinger, AuD

Food for Thought: Nutrition and Noise
Christopher Spankovich, AuD, PhD, MPH

Otoprotective Agents for Prevention of Acquired Hearing Loss in Humans
Colleen G. Le Prell, PhD

www.audiologyonline.com/nihl2013

Otoprotective Agents for Prevention of Acquired Hearing Loss in Humans

Colleen G. Le Prell, Ph.D.
Department of Speech, Language, and Hearing Sciences
University of Florida

Disclosure: Colleen Le Prell is a co-inventor on patents owned by the University of Michigan.
Acquired Hearing Loss

- Noise
- Ototoxic Drugs
 - Aminoglycoside Antibiotics
 - Cisplatin
 - Loop Diuretics
 - Salicylate
- Age
 - Age/Noise Interactions
- Chemical Solvents
- Increased oxidative stress (increased free radical production) implicated in all of the above

NIHL: The Clinical Problem

- Significant issue for military and personnel
- Quality of life issue for affected personnel
- Significant financial burden
- 1st/2nd most common occupational disease
 - Occupational noise adds to non-work exposure
- Multiple non-occupational exposure sources
 - Hunting, lawnmowers, power tools
 - concert/nightclubs, sporting events, MP3 player use
- Robust TTS may increase later age-related deficits
 - Mouse model (Kujawa and Liberman, 2006, 2009)
Sound is a Mechanical Stimulus that Causes a Mechanical Response

Strategies for Reducing NIHL

- Reduce Sound Level at it’s Source
- Reduce Exposure to the Source (decrease exposure time)
- Design Better Hearing Protection Devices
- Provide Better Education on Correct Use of HPDs
- Decrease Metabolic Stress That Induces Cell Death in the Inner Ear – Drugs or Dietary Supplements
Reactive Oxygen Species (ROS) Damage

- Free radicals essential for normal cell physiology, but in excess, they:
 - Damage cellular lipids, proteins, and DNA
 - Upregulate apoptotic pathways
 - Reactive Oxygen Species (ROS) and Reactive Nitrogen species (RNS)

Cochlear Cross-Section

Persistent RNS Confirmed Post-Noise

Nitrotyrosine Labeling, Adapted from Yamashita et al., *Brain Research. 1019(1-2):201-9*, 2004

Persistent ROS Confirmed Post-Noise

4-HNE Labeling, Adapted from Yamashita et al., *Brain Research. 1019(1-2):201-9*, 2004
Salicylate plus vitamin E reduces noise-induced hearing loss

Salicylate plus vitamin E reduces noise-induced outer hair cell death

Many Antioxidants Reduce NIHL

- N-acetylcysteine
 - Kopke et al., 2000, 2005 (w/salicylate)
 - Ohinata et al., 2003
 - Duan et al., 2004
 - Bielefeld et al., 2005; 2007
 - Coleman et al., 2007
 - Lorito et al., 2008
- Salicylate
 - w/NAC, Kopke et al., 2000
 - w/vitE, Yamashita et al., 2005
- resveratrol
 - Seidman et al., 2003
- allopurinol
- Cassandro et al., 2003
- R-phenylisopropyladenosine (R-PIA)
 - Hu et al., 1997
 - Hight et al., 2003
- SOD-polyethylene glycol
 - Seidman et al., 1993
- U74389F
 - Quirk et al., 1994

Animal Models of Otoprotection: The Problem

- Multiple Species
 - Guinea pigs, rats, chinchillas, mice

- Multiple Noise Exposures
 - Octave band noise: centered at 4 or 8 kHz, or 8-16 kHz
 - Exposures generally 4-6 hours at 105-120 dB SPL
 - Threshold shifts in control animals range from 20 to 50+ dB

- Multiple Treatment Paradigms
 - Onset of treatment ranges from several days pre-noise, to some period post-noise
 - Oral administration vs injected agents

- Difficult, if not impossible, to draw conclusions on relative efficacy across agents
Antioxidants Differ From Each Other

- **Mechanism of action**
 - Upregulate endogenous defense vs direct free radical scavenging
 - Specific free radicals scavenged
 - Prevention of excitotoxicity
- **Uptake into tissues, distribution, bioavailability**
- **Safety profile**
- **Method of delivery (oral, injected, round window)**

Translation to humans?

- For human clinical application, antioxidant agents must be safe for daily use.
- Long-term safety data for vitamins (7 yr high dose supplements with A, C, & E in AREDS)
- Extensive testing of Mg in animals and humans
- Prior studies show multiple days/weeks/months of pretreatment with single agents are effective; less benefit if initiated shortly before noise insult.
- Each agent scavenges different free radicals, and enter different parts of cells (lipid membranes, cytoplasm).
Vitamins plus magnesium reduce noise-induced hearing loss

Vitamins plus magnesium reduce OHC death

Oral Treatment Reduces NIHL in Mice: Dose-Dependent Effects

Adapted from Le Prell, C.G., Gagnon, P.M., Bennett, D.C., and Ohlemiller, K.K. 2011. Nutrient-enhanced diet reduces noise-induced damage to the inner ear and hearing loss. Translational Research, 158, 38-53.

Functional Protection Explained by Preservation of Cells in Lateral Wall

- Cell density in animals fed Diet B was equivalent to that in normal animals without history of noise exposure

Adapted from Le Prell, C.G., Gagnon, P.M., Bennett, D.C., and Ohlemiller, K.K. 2011. Nutrient-enhanced diet reduces noise-induced damage to the inner ear and hearing loss. Translational Research, 158, 38-53.
Early noise-induced deficits also reduced in Guinea Pigs

Translation to humans

- The Agents Must be Safe

<table>
<thead>
<tr>
<th>Daily Dose</th>
<th>Upper Limit</th>
<th>Percent of UL</th>
</tr>
</thead>
</table>
| **B-Carotene**
(RDA=18 mg) | 18 mg\(^1\)
20 mg (EU) | 36 mg (US)
50 (US) |
| **Ascorbic Acid**
(RDA=60 mg) | 500 mg | 2000 mg | 25 |
| **A-tocopherol**
(RDA=15 mg) | 270 mg | 1000 mg | 27 |
| **Magnesium**
(RDA=300-400 mg) | 315 mg | 350 mg | 90 |

\(^1\)Based on retinol activity equivalents

- AREDS study provides 7-year safety data for the vitamins
Human Trial Design Considerations

- Most pre-clinical studies measure reduction of PTS
- Most human trials to date assessed reduction of TTS
- Clinical relevance of reduced PTS is clear
 - why use TTS models?
- Shorter duration, reduced cost, decreased attrition
- Subject safety: PTS not expected in any subjects
- Value of TTS trial hinges on assumption that reduced TTS provides “proof of concept” (predictive value) for reduced PTS
- Most (if not all) agents that have reduced TTS (in animals) have also reduced PTS (in animals)
- Confirmatory data in PTS trials will be required
 - key issue is access to populations in which the extent, prevalence, variability, and rate of change are documented

“Failed” TTS studies

- Swedish military weapons trial
 - TTS not reliably induced during weapons training (Le Prell et al., 2011, ACEMg; Lindblad et al., 2011, NAC)
- Nightclub study
 - Variable noise exposure across exposure dates (Kramer et al., 2006, NAC)
- Occupational Noise Study
 - Failure to measure robust post-shift TTS in workers enrolled as subjects (Lin et al., 2010, NAC)
Swedish soldiers exposed to automatic weapons fire

- Two rounds Ksp58 weapon fire, 20 shots/round
 - 2 training periods per subject, ~3 months apart
- Max SPLs 164 - 166 dB SPL; SPLs under hearing protectors 135-154 dB SPL
- 31 subjects

Vitamin concentrations increased with 2 days of treatments

- 18 mg beta-carotene, 500 mg vitamin C, 270 mg vitamin E, 315 mg Magnesium per day, delivered in two half doses
- Samples taken prior to first treatment and 2 hours after final treatment (Mean ± S.D., n=9)

No reliable hearing changes during nutrient or placebo

- Military upgraded protectors
- Improved weapons
- Subjects may have used hearing protection more carefully
 - Hawthorne Effect

Protection of most vulnerable subjects?

<table>
<thead>
<tr>
<th>ID</th>
<th>Max TTS Placebo Arm</th>
<th>Max TTS Nutrient Arm</th>
<th>difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1058</td>
<td>14</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>1002</td>
<td>10</td>
<td>-2</td>
<td>12</td>
</tr>
<tr>
<td>1007</td>
<td>8</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>1057</td>
<td>8</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>1062</td>
<td>8</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>1010</td>
<td>8</td>
<td>8</td>
<td>0</td>
</tr>
</tbody>
</table>

- 6 subjects ≥8 dB TTS in placebo arm (3, 4, or 6kHz)
- 5 of those 6 subjects: TTS_{ACEMg} < TTS_{placebo}
 - 2 of 5 subjects: 12 dB difference
 - 3 of 5 subjects: 2-4 dB difference
- 6th subject: TTS_{ACEMg} = TTS_{placebo}

“Successful” TTS studies

- Laboratory noise models
 - broad-band noise (Attias et al., 2004; magnesium), narrow-band noise (Quaranta et al., 2004; vitamin B12) noise, and pure-tones (Quaranta et al., 2012; alpha-lipoic acid) are unpleasant to listen to
- Alternative TTS models based on music player studies?
 - If subjects select listening level, selected levels vary
 - Small sample sizes for any given level
 - TTS limited to subset of subjects
 - Lee et al., 1985; Pugsley et al., 1993; Hellstrom et al., 1998.
- No reliable TTS in recent studies (level set by investigator)
 - Krishnamurti & Grandjean, 2003; Bhagat & Davis, 2008; Keppler et al., 2010
- New model developed specifically for otoprotection studies
 - Le Prell et al., 2012

4-hour music exposure induces level-dependent TTS

4 hr exposure to 100-dBA music (in-ear level) temporarily depresses OAE amplitude

- F2=6 kHz, pre and post music
- Mean ± S.E. for the 12 subjects exposed to 100-dB (A) music.

Power Analysis

- Predicted TTS for placebo group in clinical trials is TTS as measured in the pilot studies
 - 4.0 ± 3.4 dB shift measured with 98-dBA (in-ear) x 4 hrs
 - 6.3 ± 3.9 dB shift measured with 100-dBA (in-ear) x 4 hrs

<table>
<thead>
<tr>
<th>Outcome Measure</th>
<th>Predicted TTS (dB)</th>
<th>Std dev (dB)</th>
<th>Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>Placebo Treated</td>
<td></td>
<td></td>
<td>0.80</td>
</tr>
<tr>
<td>TTS at 4 kHz</td>
<td>4.0 dB</td>
<td>3.4</td>
<td>112</td>
</tr>
<tr>
<td></td>
<td>6.3 dB</td>
<td>3.9</td>
<td>40</td>
</tr>
</tbody>
</table>

- New studies can be powered to detect 50% reduction in TTS using only 20 subjects per dose; increasing subject numbers increases power for detecting smaller effects
- Using this model to assess both ACEMg (NCT00808470) and Ebselen (NCT01444846)
University of Florida iPod® study

- Randomized placebo-controlled, double-blind, between-subjects design

Acquired Hearing Loss

- Noise
- Ototoxic Drugs
 - Cisplatin
 - Aminoglycoside Antibiotics
 - Loop Diuretics
 - Salicylate
- Age
 - Age/Noise Interactions
- Chemical Solvents
- Increased oxidative stress (increased free radical production) implicated in all of the above
Drug-Induced Cell Death: Simple Model

- Toxin enters cell
- Free radical formation increases
- Other pathways activated (JNK/pro-inflammatory cytokines)
- Apoptotic cell death initiated

From: *Anatomy and Physiology of Hearing for Audiologists.*

Aminoglycoside Antibiotics

- Progressive, permanent hearing loss after aminoglycoside treatment, beginning at high frequencies
- In animal subjects:
 - Hair cell death, beginning in base; hearing loss, beginning in high frequencies
 - Free radicals after kanamycin (Jiang et al, 2005) and gentamicin (Takumida et al. 1999; Heinrich et al., 2008; Choung et al., 2009; Jeong et al., 2010)
 - Pro-inflammatory cytokines (TNF-α, IL-1β and TNF-receptor type 1) increased after gentamicin (Bas et al., 2012)
 - Antioxidant system depleted after amikacin (Klemens et al., 2003)

For recent reviews:
Antioxidants reduce aminoglycoside ototoxicity

- D-Methionine
 - Sha et al., 2000 (Gentamicin)
 - Cambell et al., 2007 (Amikacin)
- Ebselen/Selenium
 - Takumida et al., 1999 (Gentamicin)
- N-acetylcysteine
 - Bertolaso et al., 2001 (Gentamicin)
 - Maniu et al., 2011 (Gentamicin)
- Sodium Salicylate
 - Sha & Schacht, 1999 (Gentamicin)
 - Jiang et al., 2005 (Kanamycin)
 - Sha et al., 2006 (Gentamicin, protection shown in humans)
 - Mazurek et al., 2012 (Gentamicin, but NOT neomycin)
- Vitamin E
 - Fetoni et al., 2003, 2004 (Gentamicin)
 - Kharkeli et al 2007: (Gentamicin, NO protection shown in humans)
- Vitamin C
 - Bertolaso et al., 2001 (Gentamicin)
- Co-enzyme Q
 - Fetoni et al., 2012 (Gentamicin)
- Ginkgo Biloba
 - Yang et al., 20121 (Gentamicin)

www.clinicaltrials.gov

Gentamicin ototoxicity reduced

- 140 mg/kg/day x 14 days; animals maintained on standard or supplemented diet
- Hearing loss greater in controls
- Hearing loss more variable in experimental (treated) animals
- Animals with most hearing loss were the animals that lost the most weight
 - They were not consuming the supplemented chow

Partial protection of function and structure

- Hearing loss greater in controls
- Cell death greater in controls

Cisplatin Ototoxicity

- Progressive, permanent hearing loss after cisplatin, beginning in high frequencies
- In animal models:
 - Hair cell death, beginning in base; hearing loss, beginning at high frequencies
 - Free radicals (O₂, H₂O₂, OH) produced
 - Biomarkers related to free radical production (4-HNE) and lipid peroxidation (malondialdehyde) observed
 - Antioxidant system depleted (reduced glutathione, glutathione peroxidase, SOD, catalase)
- Work by Schacht, Rybak, Campbell, and others

For recent reviews:
Antioxidants reduce cisplatin ototoxicity

- D-Methionine
 - Kopke et al., 1997; Campbell et al., 1996, 1999; Korver et al., 2002; Campbell et al., 2003, 2007; Lonito et al., 2011
 - Preliminary presentations of human data suggest benefit
- Ebselen/Selenium
 - Kopke et al., 1997; Rybak et al., 2000; Kim et al., 2009
- Ebselen plus Allopurinol
 - Lynch et al. 2005;
- N-acetylcysteine
 - Feghali et al., 2001; Thomas Dickey et al 2004
- Sodium Salicylate
 - Li et al. 2002; Minami et al. 2004; Hyppolito et al., 2006
- Vitamin E
 - Kalkanis et al., 2004; Sergi et al., 2004; Fettine et al., 2004; Paksoy et al., 2011; Tokgöz et al., 2012
- Vitamin C
 - Tokgöz et al., 2012
- Amifostine
 - Meta-analysis of 4 completed trials did not reveal statistically significant benefit

www.clinicaltrials.gov

What CAN we say now?

HFPTA related to dietary quality

- Choose a healthy diet!
- Higher (better) HEI score related to lower (better) HFPTA
 - Good: 81-100
 - Intermediate: 51-80
 - Poor:<51

Take Home Message

- We can reduce hearing loss induced by noise, drugs, other chemicals, and perhaps aging, in animal models
- We urgently need new drugs and/or other agents
- No “silver bullet”
 - Different therapeutics likely more effective for some insults than others
 - Different people likely to need different treatments
- With human clinical data, new interventions can become possible

Acknowledgments (Animal Models)

Collaborators
- Josef Miller (UM)
- Dave Dolan (UM)
- Kevin Ohlemiller (WU)
- Larry Hughes (SIU)

Funding Agencies
- Department of Defense: USAMRMC Contract #W81XH-11-1-0454
- University of Florida Office of Research Opportunity Award
- NIH and GM/UAW (Miller)

Students
- Ashley Weimer Johnson, Mike Goodson (EndoG, Caspase-2)
- Dustin Lang, Bianca Gomez, Debbie Joseph MD (NT-3, caspase-8, EndoG, caspase-2)
- Eric Rudnick, Mark Nelson, Jessica Santos, Almada Goldstein, Angela Vandoli (diet, aminoglycosides)
- Caitlin Simmons, Thomas Babcock MD, Yunea Park, Karessa White (mouse ARHL)

Research Technicians
- Amanda Dossatt, Justin Murray (UF)
- Diane Prieskorn, Susan DeRemer, Alice Mitchell, Karin Halsey (UM)
- Patty Gagnon (UW)
Acknowledgments (Clinical Trials)

- University of Florida
 - Patrick Antonelli MD
 - Chris Spankovich AuD, PhD, MPH
 - Edward Lobariñas PhD
 - Scott Griffiths PhD
 - James W. Hall III PhD

- Students and Staff
 - Leigh Ann Marshall BA
 - Lydia Owens, BA
 - Sebastian de la Calle
 - Shawna Dell
 - Kari Morgenstein
 - Marissa Rosa
 - Diana Guercio
 - Brittany (Sakowicz) Hensley
 - Vicki Ledon
 - Karlee Maerten
 - Erika Ortiz
 - Jason Schmitt
 - Caitlin Simmons
 - Lindsey Willis
 - Danielle Rosier Youngstrom

- Data Coordinating Center and Lead Team Members
 - Josef Miller PhD (UM)
 - Ken Guire (UM)
 - Glenn Green MD (UM)
 - Kathleen Campbell PhD (SIU)
 - Sharon Kujawa PhD (Harvard)

- Karolinska Institutet
 - Ulf Rosenhall, MD
 - Mats Ulfendahl, PhD
 - Ann-Christin Johnson, PhD
 - Ann-Cathrine Lindblad, ScD

- Funding
 - NIH: U01 DC 008423; R44 DC009106
 - Hearing Health Science (supplies)
 - Sound Pharmaceuticals (contract and supplies)

Noise-Induced Hearing Loss
Webinar Series 2013

Acceptable Strategies for Prevention of Noise- and Music-Induced Hearing Loss
Brian J. Fligor, ScD

Tinnitus Assessment in Young Musicians
Frank Wartinger, AuD

Food for Thought: Nutrition and Noise
Christopher Spankovich, AuD, PhD, MPH

Otoprotective Agents for Prevention of Acquired Hearing Loss in Humans
Colleen G. Le Prell, PhD

www.audiologyonline.com/nihl2013