If you are viewing this course as a recorded course after the live webinar, you can use the scroll bar at the bottom of the player window to pause and navigate the course.

This handout is for reference only. It may not include content identical to the powerpoint. Any links included in the handout are current at the time of the live webinar, but are subject to change and may not be current at a later date.
Electrophysiology and Perception of Speech in Noise: Research Update from National Center for Rehabilitative Auditory Research (NCRAR)

Curtis Billings, Ph.D., CCC-A/FAAAA

Acknowledgments

Collaborators:
- Marjorie Leek, Ph.D.
- Kelly Tremblay, Ph.D.
- Bob Burkard, Ph.D.
- Michelle Molis, Ph.D.
- Erick Gallun, Ph.D.
- Garnett McMillian, Ph.D.
- Melissa Papesh, Ph.D.
- Tina Penman, Au.D.
- Keri Bennett, Au.D.
- Sun Mi Ong, Au.D.
- Paul Pendergraft, Au.D.
- Emily Ellis, Au.D.
- Luke Baltzell, B.A.

Funding:
- US Department of Veterans Affairs (VA RR&D)
 - VA Career Development (C6971M, C8006W)
 - NCRAR Center of Excellence Grant (C4844C)
- US National Institutes of Health (NIH-NIDCD)
 - Small Grant Program (R03 DC010914)
 - Summer Traineeship (T35 DC008764)
Rehabilitation Research & Development
National Centers of Excellence

- Limb Loss & Prosthetics (Seattle, WA)
- Functional Electrical Stimulation (Cleveland, OH)
- Wheelchair Technology (Pittsburgh, PA)
- Innovactive Visual Rehabilitation (Boston, MA)
- Restorative & Regenerative Medicine (Providence, RI)
- Spinal Cord Injury & MS (West Haven, CT)
- Spinal Cord Injury (Bronx, NY)
- Exercise & Robotics (Baltimore, MD)
- Auditory Rehabilitation (Portland, OR)
- Bone & Joint Rehabilitation (Palo Alto, CA)
- Platform Technology (Cleveland, OH)
- Aging & Vision Loss (Decatur, GA)
- Brain Rehabilitation (Gainesville, FL)
- Spinal Cord Injury (Miami, FL)
- Spinal Cord Injury (Miami, FL)
- Platform Technology (Cleveland, OH)
- Aging & Vision Loss (Decatur, GA)
- Brain Rehabilitation (Gainesville, FL)
- Spinal Cord Injury (Miami, FL)
- Spinal Cord Injury (Miami, FL)
- Platform Technology (Cleveland, OH)
- Aging & Vision Loss (Decatur, GA)
- Brain Rehabilitation (Gainesville, FL)
- Spinal Cord Injury (Miami, FL)

Prevention of Auditory Dysfunction
- Ototoxicity
- Telehealth
- Tinnitus
- Aging and the auditory system
- Auditory Rehabilitation
- Ear-Brain system
- Hearing aids
- Hearing conservation
- Traumatic Brain Injury (TBI)
The Problem: Poor Speech Perception in Noise

Cocktail Party Effect

- automobile
- restaurants
- meetings
- concerts
- telephone

Signal-to-noise ratio (SNR):

| Signal | +5 | 0 | -5 |

Billings-AudiologyOnline (10-29-2014)
The Problem: Poor Speech Perception in Noise

- Common problem for older individuals and individuals with hearing impairment
- Most frequent complaint among hearing aid users
- Difficult situation for many Veterans (e.g., traumatic brain injury, multiple sclerosis, etc.)

Our approach: Combine behavior with brain measures to improve understanding of perception-in-noise difficulties

Topics for Today

1. Intro to physiological measures & signals in noise (absolute signal level vs. of signal-to-noise ratio)
2. Implications for aided evoked potentials
3. Relationship between brain & behavior
4. Noise type: energetic & informational masking
How do we measure the central auditory system in humans?
- EEG / MEG / PET / fMRI

Comparison of Brain Measures

<table>
<thead>
<tr>
<th></th>
<th>Single/Multiple Unit Methods</th>
<th>Hemodynamic Methods</th>
<th>Electromagnetic Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Invasiveness</td>
<td>Very invasive</td>
<td>Somewhat invasive (PET)</td>
<td>Non-invasive</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Non-invasive (fMRI)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Non-invasive (DTI)</td>
<td></td>
</tr>
<tr>
<td>Spatial Resolution</td>
<td>Excellent</td>
<td>Good</td>
<td>Poor (EEG)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mediocre (MEG)</td>
</tr>
<tr>
<td>Temporal Resolution</td>
<td>Excellent</td>
<td>Poor</td>
<td>Excellent</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cost</td>
<td>Expensive</td>
<td>Expensive</td>
<td>Inexpensive (EEG)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Expensive (MEG)</td>
</tr>
</tbody>
</table>
What are Auditory Evoked Potentials (AEPs)?
What are Auditory Evoked Potentials (AEPs)?

- type of EEG involving a stimulus
- voltage changes over time in response to an auditory stimulus
- electrical signals generated by neurons
- sum of synchronous neural activity
- recorded at the scalp

Auditory Evoked Potentials

Latency: neural conduction time
Amplitude: voltage change
P1-N1-P2
(a.k.a., vertex potential, obligatory response, slow cortical response, CAEP, ACC, etc)

Sensitive to acoustics of a stimulus

Perception In Noise Factors

Good vs Poor Performers

- **Subject factors**: hearing status, age, medical history, innate ability, cognitive processing, neural plasticity & learning, etc.

- **Stimulus factors**: signal level, SNR, signal type, noise type, spatial separation, multisensory, etc.
Auditory Evoked Potentials

Increases in stimulus intensity

- amplitude \(\uparrow \)
- latency \(\downarrow \)

Effect of SNR & tone level

Question:
What is the effect of tone level and SNR on P1-N1-P2 complex?
Effect of SNR & tone level

Question:
What is the effect of tone level and SNR on P1-N1-P2 complex?

Hypothesis:
Amplitude and latency will change with SNR rather than with absolute tone level

Subjects: 15 normal hearing
Stimuli: tones in noise
- 1k Hz tone: 750 ms duration; 7 ms rise/fall
- Noise: shaped white noise
12 Conditions (no hearing aid)
- 2 tones levels: 60 & 75 dB SPL
- 6 SNRs: Quiet, 20, 10, 0, -5, -10 dB

AEPs demonstrate sensitivity to SNR rather than absolute signal level

(Billings et al., Hear Res 254(1-2):15, 2009)
Caveat #1: Noise can enhance N1 amplitude

- Effects of noise:
 - increases in latency
 - decrease in amplitude

Billings-AudiologyOnline (10-29-2014)
Caveat #1: Noise can enhance N1 amplitude

- Binaural presentation, fast presentation rates (1/sec), inclusion of low frequency neural activity (1-3 Hz)

(Papesh et al., Clin Neurophys, in press)

Caveat #2: Loudness modifies SNR effect

- An effect of loudness when it is varied but SNR is held constant (3-dB SNR)

(Sharma et al., Neuroreport, 2014)

Topics for Today

(1) Intro to physiological measures & signals in noise (absolute signal level vs. of signal-to-noise ratio)
(2) Implications for aided evoked potentials
(3) Relationship between brain & behavior
(4) Noise type: energetic & informational masking
Aided AEPs: recording AEPs while an individual is wearing a hearing aid

Possible uses of AIDED P1-N1-P2

- Measure acclimatization and neural change over time after hearing aid fitting
- Estimate an aided threshold
- Compare neural responses of successful and unsuccessful hearing aid users
- Measure neural changes that occur with auditory training
Hypothetical Example

- **tone=50dB**
 - **noise=30dB**
- **10dB gain**
 - **tone=60dB**
 - **noise=40dB**
- **25dB gain**
 - **tone=75dB**
 - **noise=55dB**

Effect of HA Gain

Question: What is the effect of hearing aid gain on P1-N1-P2 complex?

Hypothesis: Amplitude and latency will change depending on SNR levels.
More robust responses in unaided condition compared to the aided condition as a result of larger SNRs.

(Billings et al., *Int J Audiol*, 2011)

More to Consider:
- Circuit noise, freq response, compression (Jenstad et al., *Int J Otolaryng*, 2012)
- Audibility of noise in hearing impaired

(Billings-AudiologyOnline (10-29-2014))
Two Approaches: detection vs. discrimination

Detection-like

- n=7
- Severe to profound SNHL
- 80 dB SPL

Discrimination-like

- n=4
- Moderate SNHL
- 85 dB SPL

Physiological Detection Approach

A. McNeill et al. (2009)

Physiological Discrimination Approach

E. Billings et al. (2007)

H. Billings et al. (2011)
Caveat #3: Is the aided physiological discrimination approach always problematic?

- Physiological discrimination works in some cases, especially in cases involving timing (strength of EEG)

- However, many unaided-to-aided or aided-to-aided clinical comparisons are not timing related (e.g., gain, frequency response)

- Key issue: we still do not know what hearing aid modifications can be demonstrated above threshold (i.e., discrimination approach)

(Billings et al., Int J Otolaryng, 2012)

(Tremblay et al., Ear Hear, 2006)
Caveat #4: What does a physiological detection threshold tell us?

• The sound is reaching the cortex
• The behavioral threshold is usually within 10 dB (but as much as 20 dB different)
• Absent response is non-diagnostic (tells us nothing)

How useful is a physiological detection threshold?

• Similar to a behavioral aided threshold; although, not as accurate
• Provides only limited information about the adequacy of HA fit

Clinical Significance:

1. Ready to use aided AEPs clinically? - For detection: Yes
 - For discrimination: No

2. Better understanding needed of interactions between device, auditory system, and stimuli
1. Ready to use aided AEPs clinically?
 - For detection: Yes
 - For discrimination: No

2. Better understanding needed of interactions between device, auditory system, and stimuli

3. Two stimulus factors that we know have an effect:
 a) SNR: background noise must be minimized
 b) onset modifications
 c) others?

Clinical Significance:

<table>
<thead>
<tr>
<th>Patient</th>
<th>Device</th>
<th>Stimulus</th>
</tr>
</thead>
<tbody>
<tr>
<td>hearing loss configuration</td>
<td>compression settings</td>
<td>spectral characteristics</td>
</tr>
<tr>
<td>hearing loss degree</td>
<td>frequency response</td>
<td>temporal characteristics</td>
</tr>
</tbody>
</table>

Topics for Today

(1) Intro to objective measures & signals-in-noise
 • Effects of absolute signal level
 • Effects of signal-to-noise ratio
(2) Implications for aided evoked potentials
(3) Relationship between brain & behavior
(4) Noise type: energetic & informational masking
Perception In Noise Factors

Good vs Poor Performers

- Subject factors: hearing status, age, medical history, innate ability, cognitive processing, neural plasticity & learning, etc.

- Stimulus factors: signal level, SNR, signal type, noise type, spatial separation, multisensory, etc.

Relationship between brain & behavior

- Signals:
 - 4 signal levels = 50, 60, 70, and 80 dB SPL
 - Electrophysiology = syllable /ba/; 1000 Hz tone
 - Behavior = IEEE sentences; words in noise; Acceptable Noise Level
Relationship between brain & behavior

- **Signals:**
 - 4 signal levels = 50, 60, 70, and 80 dB SPL
 - Electrophysiology = syllable /ba/; 1000 Hz tone
 - Behavior = IEEE sentences; words in noise; Acceptable Noise Level

- **Noise:**
 - continuous speech-spectrum noise
 - SNRs ranging from -10 to 35 dB

<table>
<thead>
<tr>
<th>Signal Level (dB SPL)</th>
<th>-10</th>
<th>-5</th>
<th>0</th>
<th>+5</th>
<th>+15</th>
<th>+25</th>
<th>+35</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>Beh</td>
<td>Beh/CAEP</td>
<td>Beh</td>
<td>Beh/CAEP</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>60</td>
<td>Beh</td>
<td>Beh/CAEP</td>
<td>Beh</td>
<td>Beh/CAEP</td>
<td>Beh/CAEP</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>70</td>
<td>Beh</td>
<td>Beh/CAEP</td>
<td>Beh</td>
<td>Beh/CAEP</td>
<td>Beh/CAEP</td>
<td>Beh/CAEP</td>
<td>—</td>
</tr>
<tr>
<td>80</td>
<td>Beh</td>
<td>Beh/CAEP</td>
<td>Beh</td>
<td>Beh/CAEP</td>
<td>Beh/CAEP</td>
<td>Beh/CAEP</td>
<td>Beh/CAEP</td>
</tr>
</tbody>
</table>

B = Behavioral testing; EP = Evoked Potential; — = Did not test

Electrophysiology

Latency: neural conduction time
Amplitude: voltage change
Relationship between brain & behavior

Electrophysiology

![Graph showing signal-to-noise ratio (SNR) vs. latency (ms) for different dB levels.]

Relationship between brain & behavior

Young Normal-Hearing

Behavior

- Accuracy (% Correct)

Electrophysiology

- N1 Latency
- P2 Latency

Figure 5: Behavior (left) and electrophysiology (right) for the young normal-hearing group.

(Billings et al., *JARO*, 2013)
Correlations

- Behavior vs. Electrophysiology
 - SNR50 vs. Peak value
- N1 stood out as best correlate, especially amplitude

Predictions

- Partial least squares regression used to predict behavior from electrophysiology measures
- Leave-one-out-cross-validation approach used to minimize bias associated with prediction based on same sample
- Using electrophysiology, able to predict behavioral SNR50 to within 1 dB in young normal-hearing individuals

Relationship between brain & behavior

- Young normal-hearing (YNH; n=15)
- Old normal-hearing (ONH; n=15)
- Old hearing-impaired (OHI; n=15)

Billings-AudiologyOnline (10-29-2014)

(Billings et al., *JARO*, 2013)

(Billings et al., *submitted*)
Relationship between brain & behavior

\[\text{Behavior} \]

Group Performance

- Difference between YNH and ONH (i.e. age effect)
 \[\approx 2 \text{ dB} \]

- Difference between ONH and OHI (hearing loss effect)
 \[\approx 10 \text{ dB} \]

(Billings et al., submitted)

Electrophysiology
Using brain measures to predict behavior (SNR50)

Prediction Accuracy With YNH Prediction Model:
- predictions of YNH SNR50 within 1 dB
- predictions of ONH SNR50 within about 2 dB
- predictions of OHI SNR50 within 16 dB

Using brain measures to predict behavior (SNR50)

Prediction Accuracy With OHI Prediction Model:
- Predictions of OHI SNR50 within 6 dB
- Needs improvement to be clinically meaningful
Topics for Today

(1) Intro to physiological measures & signals in noise
 (absolute signal level vs. of signal-to-noise ratio)
(2) Implications for aided evoked potentials
(3) Relationship between brain & behavior
(4) Noise type: energetic & informational masking

Perception In Noise Factors

- **Subject factors**: hearing status, age, medical history, innate ability, cognitive processing, neural plasticity & learning, etc.
- **Stimulus factors**: signal level, SNR, signal type, noise type, spatial separation, multisensory, etc.
Effect of Noise Type

- Performance is affected by noise type:
 - Release from masking (dip listening)
 - Energetic vs. informational masking

Energetic masking refers to a target and masker that overlap in time and frequency resulting in portions of the target that are inaudible; interference within in cochlea (Kidd et al., 2008).

Informational masking occurs when the target and masker are both audible, but the listener has a reduced ability to identify the target; cannot be explained solely by interactions in periphery; uncertainty and similarity (Brungart et al. 2001; Durlach et al, 2003).

Effect of Noise Type

- Subjects: 9 normal hearing
- AEPs and behavior
- Oddball Paradigm:
 1) tone contrast (standard = 1000 Hz; deviant = 500 Hz)
 2) speech contrast (standard = /ba/; deviant = /da/)

- AEPs:
 - N1-P2 obligatory responses, affected by acoustics of stimulus
 - P3 is attentional, reflects cognition and speech processing abilities

- Behavior:
 - Oddball reaction time to deviant recognition (msec)
 - Oddball discrimination accuracy (percent correct)
 - IEEE Sentences in noise (percent correct)
Effect of Noise Type

4 Noise Conditions (-3 dB SNR)
1) Quiet
2) Continuous speech spectrum noise
3) Interrupted
4) Four-talker babble

Brain Results: N1-P2 Complex

Brain Results: N1-P2 Complex

Latency (ms)

Amplitude (µV)

Interrupted Noise
Gap Trials
Noise Trials

Results: P300 Waveform

Amplitude (µV)

Tone 500Hz

Speech /da/

Quiet
Interrupted
Continuous
Babble

Behavioral Results: Reaction Time

![Graph showing reaction time in milliseconds for quiet, interrupted, continuous, and babble conditions for tone and speech stimuli.]

Bennett et al., *Ear Hear* 32:231-8, 2012

Behavioral Results: % Correct

![Graph showing % correct for quiet, interrupted, continuous, and babble conditions for tone, speech, and sentences.]

Bennett et al., *Ear Hear* 32:231-8, 2012
Brain & Behavior: P3 & Reaction Time

\[R^2 = 0.6202 \]

- Speech-Babble
- Speech-Continuous
- Speech-Intermittent
- Tone-Babble
- Tone-Continuous
- Tone-Intermittent

Brain & Behavior: P3 & % Correct

\[R^2 = 0.5608 \]

- Speech-Babble
- Speech-Continuous
- Speech-Intermittent
- Tone-Babble
- Tone-Continuous
- Tone-Intermittent

Conclusions

- Signal-to-noise ratio is a main stimulus factor affecting brain & behavior.
- Informational masking (babble) interfered with brain encoding; limited release from masking with interrupted noise.
- Age and hearing impairment are important subject factors for brain & behavior.
- Brain measures are correlated with behavior and can predict behavior well in some populations.

- From the Lab → Cocktail Party:
 - reduce the SNR (volume &/or distance)
 - use all of your senses (hearing + vision)
 - separate sources in space
 - change the environment
 - hearing assistive devices (hearing aids, FM systems, etc)

How does this impact the clinic?

31 yo male

- Referred to ENT by PCP because of vertigo
- Concussion and temporal bone fracture after fall
- Vertigo, tinnitus, headaches
- Hx of noise exposure; 2 deployments (6 years)
- PTSD, depression, easily distracted, needs repetition
- "Why do I have normal hearing but can’t seem to understand the speech of others?"
- Couldn’t finish testing due to fatigue
- Performed poorly on all subtests

30 yo male

- Referred by polytrauma; being evaluated for mTBI
- Concussion when truck flipped in Iraq
- Tinnitus, Hx of noise exposure
- PTSD, depression, anxiety, cognitive difficulties
- Needed breaks after every test; nausea because of anxiety (trying not to vomit)
- Performed poorly on all subtests
- Was it due to anxiety?
How does this impact the clinic?

Good vs Poor Performers

- **Subject factors**: Subject factors: hearing status, age, medical history, innate ability, cognitive processing, neural plasticity & learning, etc.
- **Stimulus factors**: signal level, SNR, signal type, noise type, spatial separation, multisensory, etc.

Improve diagnosis/assessment and tailor treatment to the needs of the individual

Thank You!

curtis.billings2@va.gov

http://www.ncrar.research.va.gov/
References

Billings-AudiologyOnline (10-29-2014)