If you are viewing this course as a recorded course after the live webinar, you can use the scroll bar at the bottom of the player window to pause and navigate the course.

This handout is for reference only. It may not include content identical to the powerpoint. Any links included in the handout are current at the time of the live webinar, but are subject to change and may not be current at a later date.
Advances in Implantable Amplification Devices

Brad A. Stach, Ph.D.
Division of Audiology
Department of Otolaryngology - Head and Neck Surgery
Henry Ford Hospital
Detroit, MI

Disclosures – Brad A. Stach, Ph.D.

Chair, Audiologist Advisory Panel

Member, Medical Advisory Board
Overview

• Why Middle-ear Implants?
• Partially Implanted MEIs
• Fully Implanted MEIs

Implants

- Bone-conduction devices
 - Conductive loss
 - ~20,000/yr
- CI
 - Profound SNHL
 - ~40,000/yr
- MEI
 - Moderately to severe SNHL
HA Fitting Profiles

- Open Fit
- Thin Tube or RIC
 Closed
- Power BTE
- Cochlear Implant

Acoustic Speaker Limitations

- Feedback
- Occlusion
- Distortion
MEIs are “speakerless”

MEIs use electromechanical energy to directly vibrate the ossicular chain and cochlear instead of using acoustic energy to vibrate the TM

MEI Benefits

- Improved fidelity and quality of sound
 - Direct stimulation of ossicles
 - Elimination of speaker
 - Elimination of acoustic distortion
MEI Benefits, cont.

- Avoidance of feedback
 - No acoustic energy
- Improved gain
 - Gain not hindered by feedback
- Reduced or eliminated occlusion effect
 - Open-fit or totally open canal

Partially Implanted Devices

- Implanted component
- External component
 - Hearing aid like device
 - Similar lifestyle restrictions as a hearing aid
Partially Implanted Devices

- Vibrant Soundbridge by Med-El
- Maxum by Ototronix

Vibrant Soundbridge

- First introduced in 1996
- Made by Symphonix until 2002
- Re-released by Med-El in 2004
- http://www.medel.com/int/vibrant-soundbridge
Vibrant Soundbridge

External Processor

Implanted Receiver

Audio Processor
- External – held on by magnet

Receiver
- Implanted in mastoid

Conductor
- Link

FMT
- Floating Mass Transducer – permanent magnet wrapped in titanium can wrapped with gold wire
Vibrant Soundbridge

From Todt et al., 2002

Vibrant Soundbridge

From Luetje et al., 2002

CONTINUED
Vibrant Soundbridge

- Current status:
 ~ 3,000 implants worldwide this past decade
Ototronix Maxum

- Based on the early work of Dr. Jack Hough
- Later refined by Ototronix
- http://www.mymaxum.com

Ototronix Maxum

- FDA Approved
 - Adults 18 years and older
 - Moderate to severe sensorineural hearing loss
Integrated Processor/Transceiver Implant

Ototonix Maxum

Maxum Procedure

- Minimally invasive
- Transcanal approach
- Local anesthetic
 - In-office procedure room or surgical center
- ~30 min.
Maxum Processor

- Digital processing technology
 - Noise reduction – 8 bands
 - Gain adjustment - 8 bands
 - Adaptive directional microphones
 - Advanced compression algorithms - 8 channel WDRC
 - Multiple listening environments – 4 programs
- IPC/CIC or micro-BTE configurations
- Fitting program similar to hearing aids
- Easily upgradable

Fitting Criteria

- Hearing aid users
- Custom molds
 - Desire open-fit experience
- Mod-severe to Severe SNHL
 - HF Ave (2K, 3K & 4K) > 55 dB
Functional Gain

Available MAXUM Gain

- Functional Gain

- Average MAXUM A
 - Gain over HA
 - 7.0-7.9 dB PTA
 - Gain over HA
 - 9.2-10.8 dB HF
 - Gain over HA

- Functional Gain over HA

- FDA PMA Phase II Clinical Study

*FDA PMA Phase II Clinical Study
Articulation Index

Word Recognition

Device Preference

*FDA PMA Phase II Clinical Study
Case Study

- Unaided
 - WRMAX = 72%

- MAXUM
 - WR50 = 84%
 - WR50 = 76%

- HA
 - WR50 = 48%

- Unaided
 - WRMAX = 72%

Case Study

- Unaided
 - WRMAX = 56%

- MAXUM
 - WR50 = 88%

- HA
 - WR50 = 48%

- Unaided
 - WRMAX = 56%
Fully Implanted Devices

- Carina by Otologics
- Esteem by Envoy

Otologics Carina

- Developed by John Frederickson at Washington University in St. Louis
- Originally a partially implantable device
- Now fully implantable
- No longer in FDA clinical trials
- Currently distributed in Europe by Cochlear
From Jenkins et al., 2007

Otologics MET Fully-Implantable Device

Otologics Carina

Carina™
FULLY IMPLANTABLE HEARING DEVICE
From Jenkins et al., 2007
Envoy Esteem

- 1985 – Original development began
- 1995 – Envoy Medical founded (St. Croix Medical)
- 1997 – 1st animal studies
- 1998 – 1st acute human trial
- 2000 – 1st totally implanted devices for humans
- 2000-2002 – Feasibility trials in Germany and US
- 2004-2007 – FDA Clinical Study
- 2008-2009 – FDA Pivotal Study
- 2010 – FDA approval
- http://envoymedical.com
Esteem Device

43 Sound Processor
Installed in recess of mastoid bone

Sensor
Senses vibrations from incus

Driver
Delivers increased energy to stapes

Esteem Sensor & Driver
PIEZOELECTRIC TRANSDUCERS

Each transducer moves in only one direction:

• **Sensor** – displacement of the incus deflects the piezoelectric portion of the device, which produces an electrical signal that then travels to the sound processor

• **Driver** – electrical signal from the sound processor travels to the driver and causes the piezoelectric portion of the driver to deflect

Key Benefits
• Ultra-low power
• Low distortion even at max output levels
• Low noise
Additional Esteem Benefits

- Uses the TM as the microphone
 - Natural head shadow, pinna, and ear-canal effects
 - Open ear canal
- Totally implanted
 - Invisible
 - Long battery life
- Lifestyle Considerations
 - 24/7 hearing
 - Waterproof (underwater depth rating to 33 ft.)
 - No daily maintenance

Battery Life

Sound Processor battery life estimates for typical acoustic exposure determined through laboratory testing

<table>
<thead>
<tr>
<th>Hours/day (7 days/week)</th>
<th>Battery life</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 hours</td>
<td>4.5 years</td>
</tr>
<tr>
<td>15 hours</td>
<td>6.5 years</td>
</tr>
<tr>
<td>8 hours</td>
<td>9 years</td>
</tr>
</tbody>
</table>

Median battery life = 5 – 5.5 years

- Note: continuous exposure to excessively loud sound levels (90 dB SPL, 24 hours per day) with the highest gain settings can result in significant reduction of battery life.
Indications for Use

The Esteem is indicated for patients with hearing loss who meet the following criteria:

• 18 years of age or older
• Stable bilateral sensorineural hearing loss of moderate to severe degree (PTA= 40-90 dB HL)
• Unaided word recognition test score ≥ 40%
• Normally functioning Eustachian tube
• Normal tympanic membrane and middle ear anatomy
• Adequate space for Esteem implant determined via a high resolution CT scan
• Minimum of 30 days of experience with appropriately fit hearing aids
Esteem Surgery

• Similar to a cochlear implant

• Surgical steps:
 - Postauricular incision
 - Mastoidectomy, facial recess, and ossicular testing
 - Incus resection and stapes cleaning
 - Sensor and driver placement with cements
 - Intraoperative system testing and closure

Sound Processor

The Sound Processor receives the electrical signal from the sensor transducer, processes the analog signal, and sends the modified signal to the driver

Processor Characteristics:

• Two channel
• Three programmable listening profiles
• Output-controlled compression
Audiogram Results
FOR ALL CLINICAL TRIAL PATIENTS AT 10 MONTHS*

Average Esteem-aided thresholds are about 15-35 dB improved over average baseline unaided thresholds between 500 and 4000 Hz

*Data for 52 patients, last data point for IDE clinical trial patients before FDA submission

Audiogram Results
FOR ALL PATIENTS*

*Total of 418 patients, including available data for commercial paying patients since FDA approval (4/2010 – 6/2012)
Clinical Study Results: SRT
RESULTS CONSTANT OVER LONG TERM

- Esteem 30 dB better than baseline unaided
- Esteem results stable over 4 years and counting

Clinical Study Results: WRS@50 dB HL
RESULTS CONSTANT OVER LONG TERM

- WRS improved by 67% over unaided baseline
- Esteem results stable over 4 years and counting
Clinical Study Results
Thornton Raffin Analysis on WRS@50dB HL

<table>
<thead>
<tr>
<th></th>
<th>Baseline-Unaided</th>
<th>Baseline-Aided</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Percent</td>
<td>N</td>
</tr>
<tr>
<td>Better</td>
<td>84 %</td>
<td>42</td>
</tr>
<tr>
<td>Same</td>
<td>14 %</td>
<td>7</td>
</tr>
<tr>
<td>Worse</td>
<td>2 %</td>
<td>1</td>
</tr>
</tbody>
</table>

WRS with Esteem was compared to baseline scores obtained unaided and with a hearing aid, using Thornton and Raffin (1978) critical difference criteria. Because these criteria take into account WRS test variability, it is a stronger comparison than simply looking at WRS scores.

Patient Questionnaire Results
QUALITY OF LIFE: HEARING

- **Sound Clarity**: 78% rated clarity of sound as somewhat or much better with Esteem®
- **Sound Natural**: 76% reported voices sounding natural as somewhat or much better with the Esteem®
- **Speech in Background Noise**: 68% rated the ability to understand speech in background noise as somewhat or much better with the Esteem®
Patient Questionnaire Results

QUALITY OF LIFE: LIFESTYLE

- **Activity**: 85% said their activity level was somewhat or much better with the Esteem®
- **Confidence**: 85% said their feeling of confidence was somewhat or much better with the Esteem®
- **Invisible**: 66% rated the benefit of the entire system being invisible to the onlooker as somewhat or much better with the Esteem®

Reality of an Impaired Cochlea

- We are still delivering sound to an impaired cochlea that is likely to have disordered
 - Frequency resolution
 - Temporal resolution
 - Dynamic range
- Nothing about the nature of MEIs changes those fundamental challenges
- As in conventional hearing aid, success comes with managing expectations