If you are viewing this course as a recorded course after the live webinar, you can use the scroll bar at the bottom of the player window to pause and navigate the course.

This handout is for reference only. It may not include content identical to the powerpoint. Any links included in the handout are current at the time of the live webinar, but are subject to change and may not be current at a later date.
Anatomy & Physiology of the Vestibular System
Learning Objectives

• After this course learners will be able to:
• Identify the main components of anatomy of the vestibular system.
• Describe the basic physiology of the vestibular hair cells and the push/pull mechanism of the vestibular system.
• Identify the main ascending and descending targets for afferent vestibular data and describe the function (as related to balance and/or dizziness) of each target.
• Identify the efferent tracts that arise from the vestibular system.
• Describe the function of the VOR and its relationship to both the visual and vestibular systems.

Vestibular Problems that impact Function

• Dizziness
• Vertigo (sense of spinning)
• Imbalance
• Visual fatigue or blurring
• Headache
Incidence & Prevalence of Dizziness

- 8 million primary care visits annually
- #1 reason for someone over 65 to consult MD
- Second only to HA in prevalence
- 42% of US population (90 million) will c/o at least once in their lifetime
- Estimated that 85% of dizziness is peripheral

Purpose of the Vestibular System

- Detects head angular velocity and linear acceleration
- Orients the head and body to gravity
Functions of the Vestibular System

- Stabilize gaze: Stabilizes visual images on the fovea during head movements ➔ VOR (Vestibular Ocular Reflex)
- Control Posture: Keep the body balanced, especially while the head is moving
- Provide information used for spatial orientation
- Coordinate head and body movements

Works in Conjunction with Visual and Somatosensory Data

<table>
<thead>
<tr>
<th>SENSORY INPUT</th>
<th>CENTRAL PROCESSING</th>
</tr>
</thead>
<tbody>
<tr>
<td>VISUAL</td>
<td>PRIMARY PROCESSOR</td>
</tr>
<tr>
<td>VESTIBULAR</td>
<td>(VESTIBULAR NUCLEAR COMPLEX)</td>
</tr>
<tr>
<td>SOMATOSENSORY</td>
<td></td>
</tr>
<tr>
<td>(PERIPHERAL)</td>
<td>ADAPTIVE PROCESSOR (CEREBELLUM)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MOTOR OUTPUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>EYE MOVEMENTS POSITION CHANGES</td>
</tr>
</tbody>
</table>
3 components to the Human Vestibular System

• Peripheral Sensory Apparatus
• Central Processor
• Mechanism for Motor Output and Sensory Integration: Ascending and Descending Tracts

ANATOMY

• External
• “Inner” ear
• Vestibular Nerve
• Central Processing
External Anatomy

- External Canal
- Tympanic membrane
- Middle Ear
- Oval Window
- Inner Ear

- All of the above structures except the external canal are enclosed within the temporal bone
Inner Ear Anatomy

- Vestibule (Central Chamber)
- (3) Semi Circular Canals (per side)
 - Anterior
 - Posterior
 - Lateral
- (2) Otoliths (per side)
 - Utricle
 - Saccule
- Cochlea
Central Chamber

- Central Chamber (Vestibule) ➔ Filled with perilymphatic fluid (High Na:K ratio, similar to CSF)
- Perilymphatic fluid communicates via cochlear aqueduct with CSF in the subarachnoid space
3 SEMI-CIRCULAR CANALS
Per side

- Anterior (Superior): Nodding of the head
- Posterior (Inferior): SB
- Horizontal (Lateral): Rotation
- Ampula: Articulates with Utricle

Semi Circular Canals: Anatomy

- Bony Labyrinth
- Membranous Labyrinth located INSIDE the bony labyrinth
- Ampula: Widening at the base of each semi circular canal
Membranous Labyrinth

- Suspended within bony labyrinth by fluid and supportive connective tissue
- Surrounded by perilymph
- Filled with endolymphatic fluid (High K: Na ratio, like intracellular fluid)
- No direct communication between endolymph and perilymph
- Endolymph is absorbed in endolymphatic sac
- Contains the sensory organs: Crista ampullaris & cupula (Inside the Semi Circular canals)
Sensory Organ of Semi-CC

- Located within the membranous labyrinth inside a structure known as the *ampula*
- Crista Ampullaris: Base of the cupula
- *Cupula: Gelatinous mass*
Semi-Circular Canals

- 3 Canals on each side
- Detect Angular VELOCITY
- Horizontals work as a pair
- Anterior canal works with posterior canal of opposite side
- Planes of canals are not directly in line with treatment plane but closer to planes of extraocular muscles
- Provide sensory input re: angular head velocity ➔ Vestibular Ocular Reflex (VOR) generates eye movement that matches head velocity
Canals are not aligned directly in the treatment planes

- Canals are aligned to the planes of the oculomotor muscles
- Horizontal (Lateral) canal inclined 30 degrees from horizontal plane
- Superior/posterior canals 45 degrees from sagittal plane
- All angular head movements stimulate at least 2 canals, often all 3
Functions of the Cupula

Cupula

- Cupula: Gelatinous mass
- Located inside the **ampula**
- Hair Cells: **Primary receptor**; extend from the primary afferent nerve of vestib system, through crista ampullaris into cupula
PHYSIOLOGY

• Movement of fluid (endolymph)
• Deflection of hair cells (within the cupula)
• Each hair cell has a corresponding afferent neuron
• Action potential on what eventually becomes CN VIII

PHYSIOLOGY: Ampulla

• Two types of hair cell receptors
 – Type I: Phasic receptors
 – Type II: Tonic receptors
• Movement of head ➔ Movement of endolymph ➔ movement of crista ampularis ➔ deflection of hair cells
• Each hair cell has a corresponding afferent neuron. These neurons have a baseline firing rate
• When hair cells are deflected towards the utricle (toward kinocilium) ➔ Excitation
• When hair cells are deflected away from the utricle ➔ Inhibition
Sensory Receptors of the Vestibular system

Questions?
Otoliths (2 per side)

- Utricle: Larger; Located in the transverse plane; all 3 canals originate and terminate on it; when head horizontal, sensory organ of utricle is nearly horizontal
- Saccule: Smaller, located in the saggital plane, more distal from canals; when head is horizontal, saccule is nearly vertical
- Sensitive to gravity and linear acceleration
Macula of the Saccule &
Macula of the utricle

Located within:
Saccule and Utricle

Sensory Organs within otoliths

• Macula of the Saccule
• Thickened area of ectoderm
• Contain supporting cells and hair cell receptors
• Otolithic membrane (gelatinous plate)
• Carbonate crystals
Physiology: Macula

- Cilia of hair cells embedded in otolithic membrane
- Each hair cell has a carbonate crystal on its end: otoconia
- With no head movement: Hair cells only respond to the pull of gravity ➔ static response code
- Linear acceleration or deceleration of the head also displaces otolithic membrane
PHYSIOLOGY: 101

- Movement of fluid
- Deflection of hair cells
- Action potential on what eventually becomes CN VIII
PHYSIOLOGY: Who can stop at 101?

- Detection of movement: Gravity, head & neck movement
- Receptors: Otoliths and SCC
- Hair Cells are located within BOTH types of receptors
- Deflection of hairs cells due to head movement stimulates the action potential
- Different types of movements deflect hair cells, but, otoliths and SCC function is based on movement of hair cells

Physiology: Macula

- Cilia of hair cells embedded in otolithic membrane
- Each hair cell has a carbonate crystal on its end: otoconia
- With no head movement: Hair cells only respond to the pull of gravity ➔ static response code
- Linear acceleration or deceleration of the head also displaces otolithic membrane
Macula

Otoconia: calcium carbonate crystals

Otolithic membrane

Hair cells

Macula

Vestibular nerve

Otoliths

Gelatinous matrix

Cilia

Hair cell

Vestibular nerve axons

Supporting cells
Vestibular Nerve

- Cranial Nerve VIII (Vestibulo-cochlear Nerve)
- Carries sensory data both from the vestibular system and from the cochlea
- Travels in the Internal auditory canal along with the facial nerve and labyrinthine artery
- Enters the brainstem at the ponto-medullary junction

Vestibular Nerve

- Contains two divisions: Superior and Inferior
- Superior ➔ Utricle, horizontal and and anterior SCC
- Inferior ➔ Saccule and Posterior SCC
- Individual branches enter Scarpa’s Ganglion first, then emerge and form CN VIII
Vestibular Nerve

- Primary afferents reside in Scarpa’s ganglion (also known as vestibular ganglion)
- Contains bipolar ganglion cells of first order neurons
- Scarpa’s ganglion is in the internal auditory canal
Vestibular Nerve

- Each hair cell sends an individual afferent projection to Scarpa’s ganglion
- Use either aspartate or glutamate (excitatory)
- Central processes from both ganglion unite to form the vestibular division of CN VIII
- No primary vestibular afferents cross the midline
- SSA: Special Somatic Afferent
Central Processing of Vestibular Input

- **Main Targets:**
 - Vestibular Nuclear Complex
 - Cerebellum
- **Other Targets:**
 - Cell groups: f, x, y, z (minor vestibular nuclei)
 - Motor nuclei of the extra-ocular muscles

Vestibular Nuclear Complex

- From Scarpa’s Ganglion
- Along CN 8
- 4 Vestibular Nuclei
 - Superior
 - Medial
 - Lateral
 - Inferior (Deiter’s)
- Minor Nuclei: f, x, y and z
- Located in the rostral medulla & caudal pons
Vestibular Nuclear Complex: General Function

- Superior & medial ➔ relays for VOR
- Medial ➔ vestibulospinal reflexes; coordinates head/eye movements that occur together
- Lateral ➔ Principle nucleus for vestibulospinal reflex
- Inferior ➔ Connected to all others and CB; no primary output of it’s own
Vestibular Nuclear Complex: Afferent input

- SVN \rightarrow Input from SCC
- MVN \rightarrow Input from SCC
- LVN \rightarrow Input from other nuclei and utricle/saccule
- Inferior \rightarrow Input from Saccule

Vestibular Nuclei: Efferent output that Ascends

- SVN \rightarrow MLF \rightarrow Abduces (CN VI); Troclear (CN IV) & Oculomotor Nuclei (CN III)
 - CN VI: Lateral rectus
 - CN IV: Superior Oblique
 - CN III: Inferior Oblique; medial, superior & inferior rectus
- MVN \rightarrow MLF \rightarrow Extraocular nuclei (CN III, IV and VI) & Interstitial nucleus of Cajal
- IVN \rightarrow MLF \rightarrow Troclear & Oculomotor Nuclei
Vestibular Nuclei: Efferent Output that Descends

- LVN → LVT → Lamina IX → alpha MN (cholinergic → Excitatory)
- MVN → MLF → Lamina VII & VIII in C-spine segments. Inhibitory or excitatory. Also known as the medial vestibulospinal tract
- IVN → Inferior olivary nuclues → medial reticular formation → CB & C-spine segments

Pathways
Vestibular Nuclei

- Principally motor reflex connections to nuclei innervating extraocular muscles, motor reticular formation, spinal motor neurons and CB
- Modest projections to Cerebral cortex, via the dorsal thalamus

QUESTIONS???
Cerebellum

• Major recipient of outflow from vestib nuclear complex
• Major source of input to the vestib nuclear complex via direct projections to vestib nuclei
• Parts of the CB adjust the GAIN of the VOR and duration of VOR response
• Vestibular labyrinth: Only sensory organ to send primary afferent fibers directly to CB
• Vestib system also sends second order afferent fibers to CB (SVN, MVN & IVN)

Cerebellum

• Most portions of the Vermis (Cerebellar midline) respond to vestibular stimulation
• Flocculus, nodulus, uvula and fastigial nucleus are sometimes referred to as the “Vestibular Cerebellum”
CONTINUED
Vestibular Reflexes: VOR and VSR

VOR: Vestibular Ocular Reflex

- Keeps the eyes steady while the head is moving
- Angular VOR: Mediated by Semi CC ➔ Gaze stabilization
- Linear VOR: Mediated by Otoliths ➔ compensates for translation
Vestibulospinal Reflex

- Senses head movement and head relative to gravity
- Output to anterior horn cells that innervate extensors of neck, trunk, and extremities
- Must use otolith input
- Projects to antigravity muscles via 3 major pathways:
 - Lateral vestibulospinal tract
 - Medial vestibulospinal tract
 - Reticulospinal tract
Vestibulospinal Reflex

- Helps maintain upright posture in reference to gravity
- Maintains equilibrium of the body during movement
- Maintains background muscle tone (in conjunction with the Cerebellum)
- More complex pattern of activation than the VOR, most likely a compilation of several reflexes as opposed to just one reflex
- Fewer studies on the VSR (compared to VOR) due to its complexity
QUESTIONS?

Helpful Web Resources

- Vestibular SIG of the Neurology section
- You Tube
- Geriatric Examination Tool Kit
- VEDA (www.vestibular.org)
REFERENCES