The Ponto Bone Anchored System: The Right Choice for Pediatrics

Mary Humitz, AuD
Clinical Specialist

Financial Disclosure

Financial: I am a paid employees of Oticon Medical, LLC

Course content describes the Oticon Medical Ponto Bone Anchored System
Learning Objectives

• Participants will be able to describe when the MIPS surgical procedure is appropriate.
• Participants will be able to describe patient indications.
• Participants will be able to discuss the importance of the speech envelope on speech intelligibility.
• Participants will be able to describe the newly FDA cleared abutment extender.

The William Demant Family

<table>
<thead>
<tr>
<th>Offerings</th>
<th>William Demant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hearing instruments</td>
<td>oticon</td>
</tr>
<tr>
<td>Cochlear implants</td>
<td>bernafon</td>
</tr>
<tr>
<td>Bone anchored hearing solutions</td>
<td>siemens</td>
</tr>
<tr>
<td>Diagnostic instruments</td>
<td>ssi Mariner</td>
</tr>
<tr>
<td>Related areas</td>
<td>MedRx</td>
</tr>
<tr>
<td></td>
<td>because sound matters</td>
</tr>
</tbody>
</table>
The Ponto Bone Anchored System: The Right Choice for Pediatrics

Fundamentals of bone anchored technology and osseointegration

Ponto Bone Anchored System

- Candidacy
- Surgical Considerations and Soft Bands
 - MIPS, Biohelix™, Soft Healing Cap & soft bands
- Fitting considerations
 - Abutment Extension
- Processor Models & Signal Processing
 - Evidence supporting the use of advanced features for children

Conclusion

Because sound matters
The Fundamentals of Bone Conduction and Osseointegration

Bone Anchored Hearing Systems (BAHS)

Sounds are converted to vibrations, which the skull transmits directly to the inner ears.
A Bone Anchored Hearing System Consists of Three Parts:

Osseointegration

Living Bone Tissue (Osseo) Integrating with Titanium
The Ponto is an Osseointegrated Bone Conduction Implant System That Provides Direct Bone Conduction Stimulation

Patient Indications and Candidacy

Conductive / Mixed Hearing Loss
Single Sided Deafness
Children with Conductive / Mixed Indications

Unilateral or bilateral typical diagnosis:

• Atresia / Microtia
• Chronic otitis media
• Cholesteatoma
• Middle ear dysfunction/disease
• External otitis
• Syndromes (e.g. Treacher Collins, Goldenhar, CHARGE...)

Conductive / Mixed Indications

Pure Tone Bone Conduction scores on average @ .5, 1, 2 & 3 kHz

• Ponto Plus - better than or equal to 45 dB HL
• Ponto Plus Power - better than or equal to 55 dB HL
• > 5 years of age (implanted) otherwise fitted with a softband
Children with Bilateral Conductive/ Mixed HL

- Audiologic considerations are to have *symmetrical BC thresholds*
- To provide bilateral hearing (localization, improved speech understanding in noise, etc.)

Children with Single-Sided Deafness / Unilateral Hearing loss (UHL)

- Acoustic neuroma
- Sudden unilateral deafness
- Ototoxic treatments
- Trauma
- Surgical intervention resulting in unilateral deafness
- Neurological degenerative disease
Hearing Loss in Only One Ear, “What’s the big deal?”

Listening Challenges

• Any time listening is not easy it will be harder for a child with unilateral hearing loss to pick up new words.
• Hearing from a distance is a challenge.
• Children with unilateral hearing loss may be **10 times** more likely to fail a grade in school or need special help to keep up in school.
• **1/3 to 1/2** of children with hearing loss who have not received help to hear better have problems learning in school!
• Also, because most rules of social interaction are learned via subtle auditory cues and visual cues, rather than direct teaching, it isn’t a surprise that about **1/5** of these children will develop behavior or social issues.

Children with Single-Sided Deafness / Unilateral Hearing loss (UHL)

• Studies show that children with unilateral hearing loss may cause*:
 • Difficulty locating sound
 • May hear sound from a distance but not understand what is being said
 • Some children may experience delays in speech and language development
 • **1/3** of children with UHL needed to repeat one grade

Children with Single-Sided deafness / Unilateral Hearing loss (UHL)

The hearing in the better ear should be

- **Better than or equal to 20 dB HL @ .5, 1, 2 & 3k Hz**
- ≥ 5 years of age (implanted) otherwise fitted on a softband

Other Patient Indications for Bone Conduction – Fluctuating Hearing Loss

Softband

- Non surgical option with children who should eventually grow out of middle ear problems that create the fluctuating hearing loss

Benefits:

- No risk of over amplification if wearing on days when hearing is normal
- Ear canal remains open – small canal, wax, drainage does not affect function
- Hearing is constant. The amount of fluctuation is all related to the middle ear and Ponto on softband overcomes any middle ear issue
Surgical Considerations

Cosmetic Expectations

- Surgical technique has evolved over recent years
- Unfortunately, older surgical techniques are still prevalent on internet
- Tissue preservation is commonplace
- With tissue preservation techniques:
 - Scars are barely visible
 - No divots at surgical site from tissue reduction
 - Hair follicles are not taken out
The Ponto System for Tissue Preservation
The Ponto Implant/Abutment

• An implant design for high initial stability
 • Wide Ponto Implant – Ø 4.5 mm
 • OptiGrip™ geometry – maximized implant surface in contact with bone
 • The highest initial implant stability in the market*

• A skin friendly Abutment family concept
 • OptiFit™ design for tissue preservation surgery
 • The proven surface for tissue preservation. Pure medical grade Titanium (Ti) abutment surface
 • Perfectly matched interface. Full skin support from underlying bone and periosteum

*Initial ISQ values measured in pre-clinical tests in artificial bone (Westerkull & Jinton (2012))

MIPS - A truly new perspective on tissue preservation

“Tissue preservation has been a great improvement for patients. With MIPS, the cosmetic outcomes are even better”
Malou Hultcrantz, Professor, MD, PhD
Perfect Fit

- The OptiFit™ shape of the Ponto abutments fits naturally to the circular incision made by MIPS
- No pockets or pathways surrounding the abutment

Patient Outcomes 7 Days Post-Op
Setting New Standards for Implant Technology

The Ponto BHX Implant is the perfect match between the proven OptiGrip™ geometry and the latest surface technology. With its micro- and nano-sized structures it takes osseointegration to the next level - bone bonding

- First laser-ablated titanium surface
- Stronger than bone¹
- Highest stability from day one

First Laser-Ablated Titanium Surface

The surface of Ponto BHX Implant matches the building blocks of bone:

"Nanometer roughness plays an important role in osseointegration. The improvement in biomechanical capacity is even greater than I imagined."

R. Brånemark, Associate Professor MD Msc. PhD

¹ Johansson ML, et al., "Site-specific laser modification promotes higher osseointegration of titanium implants." Presented at Osséo, Lake Louise, Canada, May 2015
Lifelong Patient Outcome

• Freedom of choice with the Ponto System

Oticon Medical abutment Cochlear abutment

Small Change. Big Difference

• The Abutment Extension is connected on the existing abutment without any surgery involved

• It is delivered non-sterile.

• Placement can take place outside the operating room

• The Abutment extension does not work with BAHA processors. It must be removed if a BAHA is fitted
Ponto Unilateral and Bilateral Soft Bands

- Easily adjustable soft band enables even young children to wear Ponto Plus.

Ponto Plus with Proven Technologies
Ponto Plus with Proven Technologies

2009
Ponto & Ponto Pro
• Automatic multichannel directionality
• Split directionality
• Tri-state Noise reduction
• Fully adaptive operation through automatic listening environment detection
• Active Wind noise reduction
• Data logging

2011
Ponto Pro Power
• 2-stage feedback Management
• Speech guard

2012
Ponto Pro Power
• Product design award
• BC in situ
• Nano coating

2013
Ponto sound processors
• Ponto earns IP57 classification

Today
Ponto Plus & Ponto Plus Power
• The most powerful transducer
• Feedback shield
• Wireless connectivity

And the development continues...

Ponto Plus Processors

• Most powerful FAMILY of wireless bone anchored sound processors!

• More High Frequency Gain & Extended Bandwidth provides access to the full pitch range of speech, especially the important high frequencies
 • Speech perception
 • sound quality
 • understanding speech in noise

• Inium Wireless Platform with Feedback Management system
 • Developed for power aids and bone anchored device
Ponto Plus Sound Processors

- Durable, reliable, and easy to operate

- User friendly push button for easy operating
- Water resistant nano coating
- Metal spring coupling for durability and ease of use
- Easy to access Volume control
- Hole for safety line
- Tamper resistant battery door & Low battery warning system
- IP 57 classification

Please note, Ponto Plus is not waterproof. Users should always remove their sound processor while showering or bathing.

Ponto Bone Anchored System

Fitting range for Ponto Plus and Ponto Plus Power

Ponto Plus

Avg. BC ≤ 45 dB HL

Ponto Plus Power

Avg. BC ≤ 55 dB HL
It is Easy to Fit Ponto

Genie Medical 2013.1 software
1. Select type of fitting
 Check box to ensure correct fitting rationale
 • Single-sided deafness
 • Softband
2. Measure BC In-situ
3. Measure Feedback limit

Oticon Medical Streamer
• Ready to use ‘out-of-the-box’

Children Need Access to Speech to Develop Their Listening, Language and Learning Skills
Factors That Compromise Listening Under Complex Acoustic Conditions

<table>
<thead>
<tr>
<th>Factor</th>
<th>Challenge</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brain immaturity</td>
<td>The late development of pre-frontal connections makes it challenging for children to employ attention control to relevant sound sources in distracting environments.</td>
<td>Hwang et al. 2010</td>
</tr>
<tr>
<td>Auditory inexperience</td>
<td>Children need a rich “auditory diet” to practice perceiving and processing sound to become good listeners.</td>
<td>Flexer 2011</td>
</tr>
<tr>
<td>Language unfamiliarity</td>
<td>Non-native listeners and second/third-language learners are compromised with respect to phoneme recognition and show poorer performance of speech understanding in noise.</td>
<td>Tabri et al. 2011</td>
</tr>
<tr>
<td>Unilateral or minimal hearing loss</td>
<td>Audibility and binaural hearing is a prerequisite for optimal spatial separation of competing sound sources in complex listening situations.</td>
<td>Rothpletz et al. 2012</td>
</tr>
<tr>
<td>Cognitive or perceptual load</td>
<td>Considerable listening effort is required when listening at SNRs that are typical of the school classroom. As proven by a dual-task paradigm, the availability of cognitive resources impacts a child’s ability to perform in noise.</td>
<td>Howard et al. 2010</td>
</tr>
</tbody>
</table>
Getting the Best Possible Representation of Sound

American Academy of Audiology Clinical Practice Guidelines:

Pediatric Amplification 2013
Pediatric Considerations

- “Children are learning language, and do not have the capacity to “fill in the blanks” for sounds that are not audible”

- “Children spend most of their time listening to the speech of other children and women, which has greater high frequency content than that of males”

- “Children who use hearing aids must develop the ability to use information acquired while hearing amplified, processed sound”

- “Children have more demanding listening environments than adults for understanding speech... Enhancement of audibility is required either through increased level, increased SNR, or improvement of the listening environment”

AAA Pediatric Amplification Guidelines, 2013

The Importance of Providing Amplification Early in Life

- Age at fitting of amplification is predictive for speech perception, speech production, and spoken language skills. 7

- Auditory system development, and particularly development of speech perception, is guided by access to relevant acoustic and linguistic information early in life.8

Figure 2. Waveforms showing five words embedded in broadband noise at 0 dB SNR. The upper panel shows the stimuli amplified without DNR, and the lower panel shows the same stimuli amplified with DNR.

Figure 3. Example of a dot-to-dot game. The left panel shows the game as it was presented to the child with only the dots and their numbers. The right panel shows the finished game with additional art but no numbers. The completed picture was displayed on the back of the page of the corresponding dot-to-dot game.
You are going to hear some silly names. Your job is to choose the picture on the screen that has that name by touching it with your finger or clicking on it with a mouse. If you choose the right picture, the game on the screen will play. If not, nothing will happen, and you will hear the next silly name. Don’t be surprised if it takes a little while to figure out the name that goes with each picture.
Figure 3. Waveforms showing the 15 novel words embedded in broadband noise at 0 dB SPL. The upper panel shows the stimuli amplified without digital noise reduction (DNR), and the lower panel shows the same stimuli amplified with DNR.

Figure 7. Averaged learning functions (+1 SE) for the two groups of children with NH—the 8 to 9-year-olds (upper panel) and the 11- to 12-year-olds (lower panel). Solid and dashed lines represent quiet and noise listening conditions, respectively. Data points are the averaged performance for each trial block.

Figure 8. Averaged learning functions (+1 SE) for the two groups of children with HAs—the 8 to 9-year-olds (upper panel) and the 11- to 12-year-olds (lower panel). Solid and dashed lines represent quiet and noise listening conditions, respectively. Data points are the averaged performance for each trial block.
Directionality and Noise Management

Directionality will clean up the S/N whenever possible
Unique Split Directionality Mode

Split Directionality applies directionality only above 1000 Hz

Typical use time spent in directional modes:

- **8%** Full Directionality: Adaptive directionality in all frequency bands. Typically activated in loud environments with background noise. Example: Hospital party.
- **20%** Split Directionality: Adaptive directionality in the upper frequency bands, no directional processing in the low frequencies. Typically activated in moderate to high environments. Example: Restaurant.

Speech Guard

- MFO of bone anchored devices is more limited compared to air conduction hearing aids:
 - Ponto Systems uses linear gain approach
 - Sudden, loud sounds can put device in saturation more quickly
 - Compression has been used in bone-anchored processors to tackle signal distortion
 - Compression also distorts signal

- **Speech Guard** is an amplification system to *preserve signal integrity and minimize distortion*
Speech Guard

• The adaptive amplification system in Ponto

Inium Feedback Shield

Addressing the feedback issue within bone anchored hearing systems

Unique tools for effective feedback handling

Because people and situations are different

- All the time
- At the clinic
- Feedback Manager

- In home
- Dynamic Feedback Cancellation
- Feedback Shield

- Measurement
- Individual feedback limits

- Phase inversion
- Takes care of known feedback before it occurs

- Frequency shift
- The most advanced and effective means to break the feedback path when in BAHA

- Feedback limit indicator
- Continuously gives control to avoid feedback
The Importance of High Frequencies for Children Language Development

Clinical study
- Purpose: Determine learning rate for words presented with 4 kHz and 9 kHz bandwidths
- Method: Five nonsense words, paired with 5 novel pictures
- Outcome: Children need **3 times as many trials with limited bandwidth** to learn new words as compared to the children who listen to extended bandwidth.⁵

Differences Between Direct Drive and Skin Drive Bone Conduction

Bone Conduction Direct Drive vs Skin Drive Systems

• There are two types of bone conduction devices:
 • **Direct Drive** devices send vibrations via direct route to bone (percutaneous)
 • **Skin Drive** devices send vibrations through the skin to bone
 • Transcutaneous
 • Softband and magnet solutions provide similar performance

Sounds are Attenuated in Skin Drive Solutions

• Physical facts with skin drive solutions:
 • There is 10-20 dB sound attenuation in mid to high frequency region
 • These devices have lower perceived output in the mid to high frequency region
 • Similar to using a softband or test headband

2) Verstraeten et al (2008) Comparison of the audiologic results obtained with the bone-anchored hearing aid attached to the headband, the testband and to the ‘snap’ abutment. Otology & Neurotology 30: 70-75
Consequence of Skin Attenuation on Speech Phonemes
Please Contact us

Please contact us at 1-888-277-8014
• www.oticonmedical.com/us

Mary Humitz, AuD
mhum@oticonmedical.com

Other AO Ponto Courses for your Reference

• Parents’ Perspective: The Decision Making Process for Bone Anchored Hearing Systems for Children

• Overcoming Distance and Noise: Strategies for Successfully Utilizing FM with the Ponto System

• Minimally Invasive Ponto Surgery – A New Perspective on Bone Anchored Surgery

• Wireless Connectivity in our Daily Lives: Enhancing the Ponto Plus Experience
References

- The effect of stimulus bandwidth on auditory skills in normal-hearing and hearing-impaired children, Patricia G. Stelmachowicz, Ph.D., Dawna E. Lewis, Ph.D., Sangsook Choi, Ph.D., and Brenda Hoover, M.A. Boys Town National Research Hospital, Omaha, NE

Published Articles