If you are viewing this course as a recorded course after the live webinar, you can use the scroll bar at the bottom of the player window to pause and navigate the course.

This handout is for reference only. It may not include content identical to the powerpoint. Any links included in the handout are current at the time of the live webinar, but are subject to change and may not be current at a later date.
Individualizing Pediatric Hearing Aid Fittings Part 1: Application of the RECD

Presenter: Marlene Bagatto, Au.D., Ph.D.

Moderator: Carolyn Smaka, AuD, Editor in Chief, AudiologyOnline

• Technical Assistance: 800-753-2160

• CEU Total Access members can earn credit for this course
 o Must complete outcome measure with passing score (within 7 days for live webinar; within 30 days of registration for recorded/text/podcast formats)

• Questions? Call 800-753-2160 or use Contact link on AudiologyOnline.com
Individualizing Pediatric Hearing Aid Fittings Part 1: Application of the RECD

Marlene Bagatto, Au.D., Ph.D.
Child Amplification Laboratory, Western University

March 23, 2016
AudiologyOnline.com

Pediatric Hearing Aid Fitting Process

- Audiometric Assessment
 - Part 1: RECD
 - Part 2: Electroacoustic Verification
- Thresholds and RECD
- Evaluation of Auditory Performance
- Prescription and Selection
- Hearing Aid Verification
Infants are not small adults

- Different listening needs
 - Pre-lingually hearing impaired
 - Critical period for language learning is birth to 2 years of age

- Significantly smaller ears
 - Ear canals grow and change

- Unable to provide verbal feedback about hearing aid fitting
 - Depend on caregiver for hearing aid use, monitoring and maintenance

Early Hearing Detection & Communication Development Programs

Goals:

- Identify infants with hearing loss and define the impairment by 3 months corrected age

- Initiate intervention by 6 months corrected age
Provision of Hearing Aids

- Suitable technology and evidence-based hearing aid fitting guidelines and protocols support accurate and safe hearing aid fittings for the pediatric population
 - American Academy of Audiology, 2013
 - Australian Protocol; King, 2010
 - British Columbia Early Hearing Program, 2006
 - Modernizing Children’s Hearing Aid Services, 2005
 - Ontario Protocol; Bagatto, Scollie, Hyde & Seewald, 2010;
 Updated in 2014: www.dslio.com

Presentation Outline

- Brief overview of using ABR threshold estimates for hearing aid fitting

- What is the RECD and why is it important for pediatric hearing aid fitting?

- Clinical measurement of the RECD

- Technical updates to the RECD

- Application of the RECD in hearing aid fitting
Learning Outcomes

1) Describe what the RECD is and why it is an important clinical procedure.

2) Explain how to obtain a good RECD measurement.

3) Clarify how the RECD is used throughout the pediatric hearing aid fitting process.

Assessment for Amplification

- Hearing assessment
- ABR corrections (if needed)
- RECD
- Prescriptive calculations
Infant Hearing Assessment

- Infants under 6 months of age cannot perform behavioural hearing test

Audiological Evaluation: 0-6 mo

- Estimates of hearing sensitivity are derived from FS-ABR measurements

- Hearing aid selection and fitting proceeds using ABR threshold estimates
 - Intervention is *not* postponed for collection of behavioural data
Best Practice: ABR Corrections

- Ensure a smooth transition from electrophysiologic hearing assessment to early hearing aid fitting: standardized nHL to eHL corrections.

ABR vs. Behavioural Results

- ABR threshold estimates (in dB nHL) have been shown to be higher than behavioural thresholds (in dB HL)

 e.g., 10 – 20 dB in children with SNHL

 Stapells et al 1995
 Stapells 2000
 Picton et al 1979
Behavioural vs. Electrophysiological Assessment Procedures

- dB HL
- entire auditory system
- long duration pure tones
- standard calibration

- dB nHL
- measured from the brainstem
- brief tone bursts
- non-standard calibration

Relevant References

Best Practice for Infant Assessment

- Use insert earphones for infant hearing assessment whenever possible
- It is more accurate and compatible with the target population

Assessments for Hearing Aid Fitting

- Connect inserts to personal earmolds for follow-up audiograms
 - Better retention and acceptance
 - Sets you up for a more accurate hearing aid fitting
 - Earmold Audiogram
 - Earmold RECD
Insert + Earmold

Trim Earmold Tubing

Trim Tube from Foam Tip

Connect Earmold to Insert Earphone

What is the RECD?

Why do we need it for good pediatric hearing aid fittings?
In a nutshell the RECD is....

- A set of values that describe the acoustic characteristics of an occluded ear canal.

- Difference between SPL in a coupler and SPL your patient’s ear canal.

The RECD Defined

$$\text{RECD (dB)} = \text{Real-Ear Levels} - \text{Coupler Levels}$$

Diagram:

- Frequency (Hz) axis with a curve indicating an increase in RECD (dB) as frequency increases.
- 0 dB line.
- Arrow indicating the upward trend of RECD with frequency.
Why does it matter?

The external ear is present and resonates during any audiometric procedure.

Why does it matter?

Therefore, the sound pressure level at the eardrum will vary across individuals, for the same HL level.
Different Transducer, Different HL Thresholds

Insert phones
Sound Field
TDH

In real-ear SPL (dB): SPLogram

This is the scale used for hearing aid measurements: Real-ear SPL (dB)
Variable Ear Canal Acoustics

- Large variability in ear canal SPL across infants and young children

- Must account for this variability in both audiologic assessment and in hearing instrument fitting

Sample Findings
Infant vs Average Adult RECDs

The RECD is used in two places:

- **HL Threshold + RECD + RETSPL = Real Ear SPL Threshold**
 - HL to SPL transform
 - SPLogram

- **Coupler SPL or gain + RECD + MLE = predicted Real Ear SPL or gain**
 - Coupler Verification
 - For BTEs, this needs to account for earmold!
Clinical Measurement of the RECD

How to Measure The RECD

- Measure coupler SPL across frequencies
- Place probe tube in ear, then insert tip or earmold
- Measure real ear SPL for same signal
- \[RECD = \text{real ear SPL} - \text{coupler SPL} \]
Probe-tube placement

- Place the tip of the probe tube within 3-5 mm of the eardrum

Is that an earmold you're measuring with?

Why yes it is! It is more accurate for the hearing aid fitting.

Constant Insertion Depth

- 30mm for adult males, 28mm for females
- 10-25mm for infants/children

Hints:
- Tape a ruler to your desk
- Use a highlighter to mark a few depths along it

10 mm

28 mm
Customized Insertion Depth

- Identify the ridge of the *earmold* corresponding to the location of the intertragal notch

- Lay the tube along the bottom of the *earmold*

Customized Insertion Depth

- If you have some clear wrap or soft surgical tape, connect the probe tube to the *earmold* and insert it simultaneously

- To the active toddler, this may seem like you are only inserting the *earmold*
Do Audiometry & RECD with Earmolds!

- Trim Earmold Tubing
- Trim Tube from Foam Tip
- Connect Earmold to Insert Earphone

Otoscopy First!

- Pediatric audiologists must be ambidextrous
 - Comes in handy for all procedures

- Hold the head of the otoscope and brace your pinky finger on the child’s cheek

- Use other hand to pull pinna up and back
Tips for Real-Ear Setup

Secure probe module on pinna by tightening elastic

Tips for Real-Ear Setup

Fasten clip across patient’s shirt to hold probe module in place.
Probe Tube Insertion

1) Guide tube until mark meets intertragal notch

2) Use otoscopy to check the depth of probe tube
Tip or *Earmold* Insertion

3) Insert foam tip or *earmold*

4) Ensure a good seal (use lubricant; let foam expand)

Technical RECD Updates & How the RECD is Applied in Hearing Aid Fitting
Measure Ear Canal Acoustics to Individualize Hearing Aid Fitting

- *Real-ear measurements* allow us to do this
 - Protects against errors in the fitting

- Real-ear measurement takes two forms:
 - *Real-ear verification:* Place the probe tube, verify hearing aid output in the ear.
 - *Coupler verification:* Same thing, but in a coupler with predictions to the real-ear. Common practice for pediatrics. (Join us for Part 2 to learn more!)

ANSI Standard for REM (S3.46)

- 1997: standardized REM terminology, such as “REAR”
- 2013: first in North America to standardize RECD

But why do we need to standardize the RECD?
Let’s Review........

The RECD is used in two places:

- HL Threshold + **RECD** + RETSPL = Real Ear SPL Threshold
- Coupler SPL or gain + **RECD** + MLE = predicted Real Ear SPL or gain

For BTEs, this needs to account for earmold!
If you do real-ear verification, you may still be using the first one behind the scenes:

\[\text{HL Threshold} + \text{RECD} + \text{RETSPL} = \text{Real Ear SPL Threshold} \]

Direct verification of the REAR does not use the RECD at all.

RECDs Measured with Foam Tips vs Earmolds are Not the Same

- Foam tip tubing is 25mm long
 - Earmold tubing is usually longer
 - High frequency roll-off results

Let’s call this: “Coupling Type”

36 children
Avg tubing = 38mm
Moodie et al, 2016
Coupling Type: Foam tip vs Earmold

- What if you need one type and only have the other type?
 - Example: foam tip audiogram, but only earmold RECD
 - Age trends for both types are known (Bagatto et al 2002; 2005).

- DSL5 will generate a predicted RECD for either type
 - These might be used instead of measured RECD if the Coupling Type is not matched between RECD type and RECD usage

ANSI 2013 Standard Uses HA1

- Conceptually, this accounts for the acoustic properties of the ear cavity and not designed to measure anything about earmolds
 - *Means that verification would use the HA1 coupler + putty, unless there is another solution*

- Conversion between HA1 and HA2 are applied
 - Simple, well-understood, and are easily transformed by software
In the Clinic.....

- When measuring the coupler portion of the RECD, the HA2 coupler can be used
- **Clinical** advantages:
 - Fewer infection control issues because we avoid the need to putty earmolds onto the HA1
 - Faster, more reliable connection to the coupler because a putty connection doesn’t need to be constructed
- **Standardization** advantages:
 - The standard HA1 RECD can be constructed & reported by software even though you didn’t measure it that way
 - Let’s call this: “**Coupler Type**”

Putting Together “Coupling Type” & “Coupler Type”

<table>
<thead>
<tr>
<th>Coupling type</th>
<th>Coupler Type</th>
<th>HA1</th>
<th>HA2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foam tip</td>
<td>Standard, requires putting of foam tip to coupler.</td>
<td>Nonstandard, no putty required.</td>
<td></td>
</tr>
<tr>
<td>Earmold</td>
<td>Standard, requires putting of earmold to coupler.</td>
<td>Nonstandard, no putty required.</td>
<td></td>
</tr>
</tbody>
</table>

- We can and do measure for both coupling types.
- We prefer to measure on the HA2 – easier & cleaner.
- We need **software systems that label the RECD subtype**, so that the RECD can be corrected and used as needed.
New software functions for the RECD are appearing

Goal: to comply with the new standard, but also to support a wide range of clinical practice.

Note: Specific to Audioscan systems

Relevant Links

Pediatric Fitting Protocol
(historical, and relies on “matching” for accuracy)

- Audiometry with insert phones + earmolds, measure RECD with earmolds, verify BTE in the HA2 coupler
 - Good for babies & young children, likely little or no venting

But what about this “mis-matching” protocol?

- Audiometry with insert phones + foam tip, measure RECD with earmolds, verify BTE in the HA2 coupler

New software systems allow you to **label the RECD type**. This supports **new corrections** that handle mismatches.

- A few small changes:
 - You will **label** what type of coupler-based fitting you are going to use:
 - HA2 or HA1? **COUPLER TYPE**
 - You will **label** what type of RECD you are measuring:
 - With an earmold or a tip? **COUPLING TYPE**

- If necessary, the software will convert between foam tip & earmold RECDs using a **new correction procedure**.

- Preliminary data suggest this may be more accurate than using age-predicted averages (Moodie et al, 2016; JAAA).
Measuring the coupler portion of the RECD still uses the HA2 coupler

- Note: terminology change to “RECD Transducer Calibration” or “Xducer” for short.

- Values will be converted to HA1 later. This produces the “standard RECD” even if you didn’t measure it that way.

Take Home Messages

- A measured RECD is necessary for an accurate description of your patient’s ear canal which individualizes the hearing aid fitting

- RECDs are used to convert HL to SPL AND to allow for coupler-based verification

- Measuring audiometry AND the RECD with the earmold is best practice

- ANSI standard (2013) references RECD to HA-1 coupler, but corrections are imbedded in some systems so you don't have to change your clinical procedure