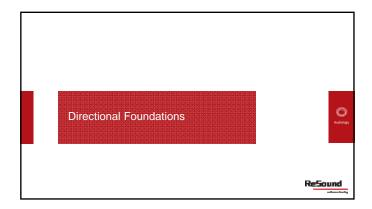
ReSound's Directional Philosophy

John A. Nelson, PhD Vice President, ReSound Global Audiology Relations

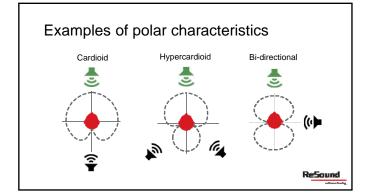
Financial disclosure


 John A. Nelson is employed as the Vice President of Global Audiology Relations at GN ReSound and has financial relationships in the products and services communicated, compared and evaluated in this presentation.

Learner Objectives

- Describe basic directionality techniques including improving sound quality and automatic switching.
- Describe the benefits of ReSound's Natural Directionality II (asymmetric directional) in terms of directional benefit and environmental awareness
- Describe the benefits of ReSound's Binaural Directionality II with Spatial Sense and the listening environments where they are beneficial.

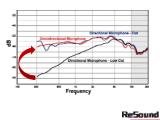
Dinten	und
THE JIL	UIIIU


Directional benefit in laboratory settings

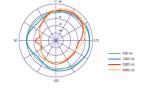
- Extensive research on directional benefit
- Most evaluation in controlled laboratory environment
- Spatially separated: Speech from the front and noise from behind
- Directional microphones can provide a large benefit in these controlled situations

ReSound

Benefits of directional microphones

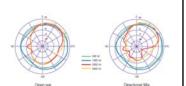


Directional mode low-frequency roll off • Low-frequency wavelength exceeds the distance between the microphones • Results in reduced low-frequency hearing aid output and reduced audibility of low-frequency sounds • Cutoff frequency dependent on microphone spacing


Directionality: Low-frequency equalization

- Increased low-frequency gain equalizes roll off and provides improved audibility
- Results in increased occlusion, noise, & wind noise

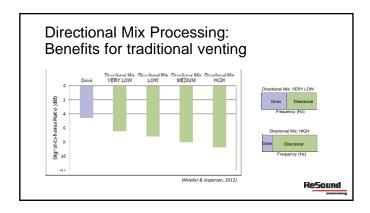
Head-related directional characteristics

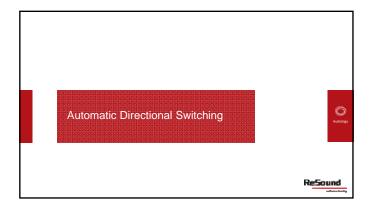

- Low frequencies travel around the head with limited intensity changes, omnidirectional pattern
- High frequencies are affected by head shadow an are more like a directional response

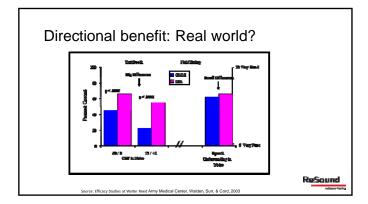
ReSound

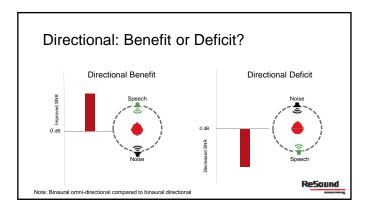
Directional Mix Processing

- Low frequencies are omnidirectional – like the natural open ear
- High frequencies are directional – increased speech understanding
- Provides rich sound quality, enhanced speech understanding, and lowfrequency localization cues

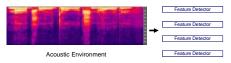



Directional Mix Processing: What is the Directional Mix?


- Directional Mix is the crossover frequency between omnidirectional and directional processing
- Aventa provides a unique prescription based on the individual's
 - Audiogram
 - Hearing aid selected



Directional Mix Processing: Benefit for open fittings Directional Mix Directional Mix Directional Mix Directional Mix Missel Directional Mix Directional Mix Missel Directional Mix VERY LOW Directional Mix VERY LOW Directional Mix VERY LOW Directional Mix HIGH Directional Mix Directional Mix Directional Mix HIGH Directional Mix Directional Mix


Basic directional philosophies

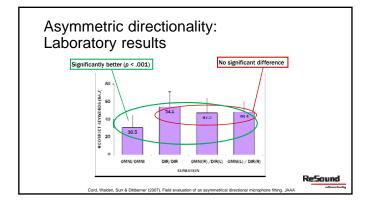
- Focus on improving SNR typically front-to-back listening improvement
- · Focus on automatic functionality
- Assumption that listener intent can be predicted based on acoustic analysis (acoustics in the environment instead of the listener's interest)
- Automatic directional philosophies are not ideal and in many situations are detrimental

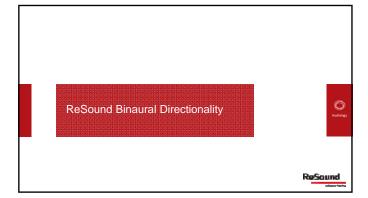
Compensation for directional deficit

- Some automatic directional microphone algorithms will analyze the acoustic environment and focus on the 'loudest speech signal' instead of the front signal
- Assumes that the listener is interested in the 'loudest speech' signal which is not always the case

ReSound

ReSound SoftSwitching Front: Speech Back: Ouler Back: Noise Back: Noise Back: Noise Back: Speech Omni Adaptive Directional

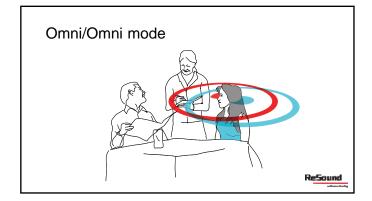

ReSound Natural Directionality II	Audiology	
	ReSound	

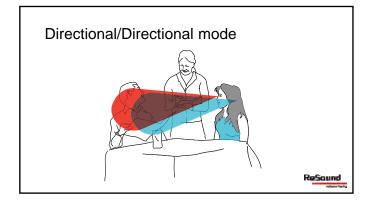

ReSound's directional philosophy

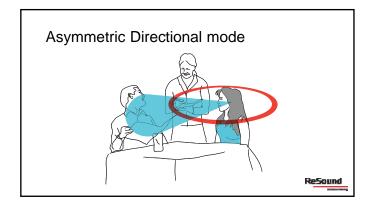
- Focus on providing natural perception
- Recognize that hearing instrument intelligence cannot replace auditory processing
- Apply technology to take advantage of brain's ability to integrate and segregate sound sources for a natural listening experience

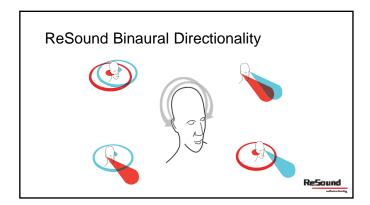
ReSound

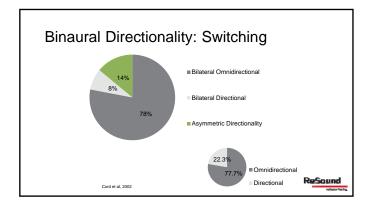
ReSound Natural Directionality II

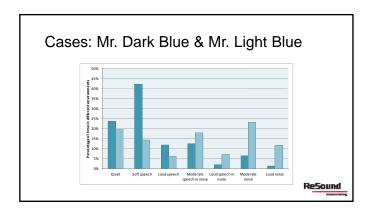


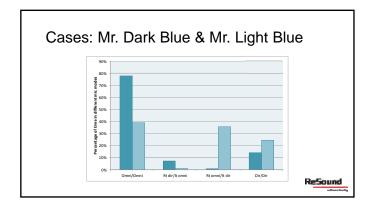


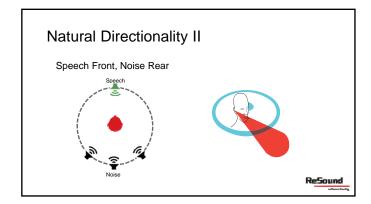

Real world listening situations

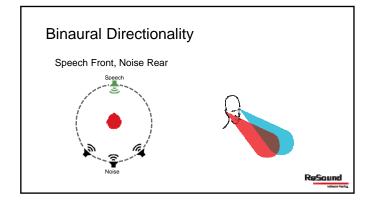

- Real world listening situations are not controlled environments
- Bilateral omnidirectional is often preferred, especially in quiet and single speaker situations
- Bilateral directional is usually preferred if the speaker is in front of and near to the listener and noise is to the sides and the back
- Bilateral directional is not correct choice if speaker is not in front of the listener
- Thus, it is difficult to make automatic switching decisions on the acoustic environment

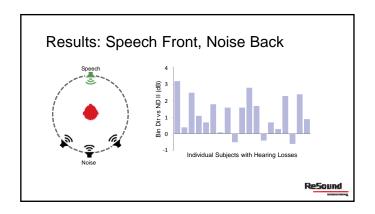


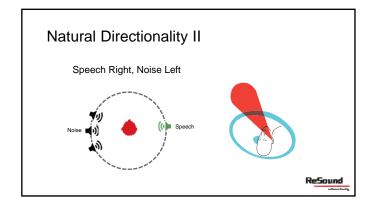


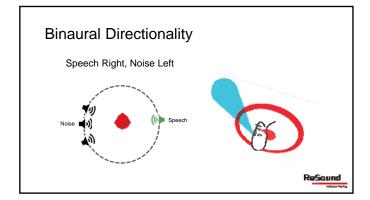


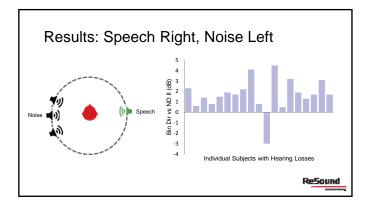



ReSound Binaural Directionality


- Provides improved signal-to-noise ratio (front-to-back) as long as the signal of interest is in front of the listener and the competing signal is to the sides or the back.
- Provides awareness and audibility to sounds that are not in front of the listener when in an asymmetric directionality mode


ReSound

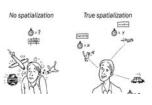

Challenging Acoustic Conditions Speech Front, Noise Rear Speech Right, Noise Left Noise Noise Resound



ReSound Binaural Directionality

- Provides improved signal-to-noise ratio (front-to-back) as long as the signal of interest is in front of the listener and the competing signal is to the sides or the back.
- Provides awareness and audibility to sounds that are not in front of the listener when in an asymmetric directionality mode

Re5ound


ReSound Binaural Directionality II with Spatial Sense

ReSound


Spatial hearing: Why is it important?

- Allows an auditory image of the environment to be formed
- Spatial hearing also creates a sense of natural sound quality

Interaural time difference

- When sound does not come from directly in front or behind, an interaural time difference occurs
- Time of arrival and phase differences of the sound between two ears are used by the brain
- Cues are detectable for lowfrequency sounds and for the speech envelope, ITD is the dominate cue
- Dominant localization cue

Interaural loudness differences

- Sound diffracts off the surface of the head, creating a "shadow" on the side away from the source
- Sounds at the far ear will be lower in intensity
- Cues are detectible for highfrequency sounds

Preserving spectral cues

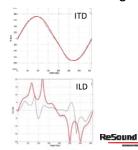
- BTE and RIE models have microphones placed above the pinnae
- Distortions to the spatial sound image as pinnae spectral cues are reduced compared to open ear
- Need to compensate for the artificial microphone position
- Dual microphone processing is applied to mimic an open-ear response

Spectral characteristics: Natural ear

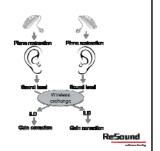
- Head-related spectral cues are plotted by frequency, amplitude and azimuth (angle)
- Left graph: Low frequencies are closer to the center and higher frequencies are to the outer of the circle. Azimuth is the angle around the head in counter-clockwise rotation. Amplitude is by color.
- Right graph: Vertical axis is frequency (low-frequencies at the top). Horizontal axis is the azimuth or angle (counter-clockwise rotation).

Spectral characteristics: BTE and RIE

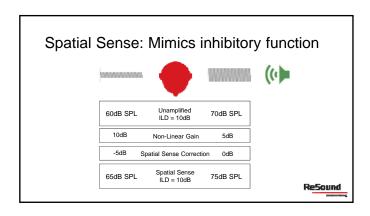
- BTE microphone position: Spectral cues are distorted as signal travels to the top of the pinna to BTE microphone location and pinna, concha, and ear canal resonances and shadows are eliminated
- Spatial Sense: Spectral cues lost due to BTE/RIE microphone placeme similar to Open ear Spatial Sense Spatial Se

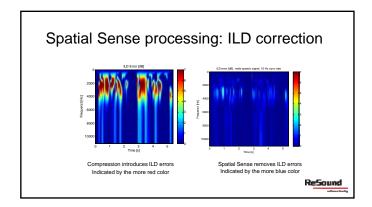


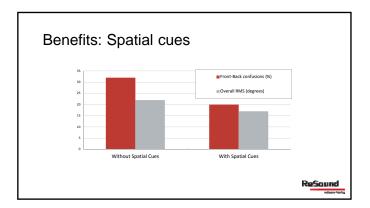
ReSound

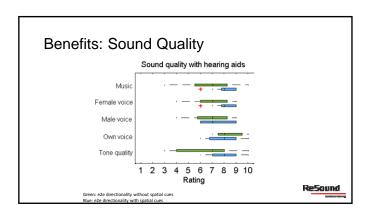

ITD preserved: Directional Mix Processing

- Desired open-ear response is red line
- ReSound e2e is the black line
- ITD preserved
- ILD errors can reduce sound quality as it will sound less natural if spatial cues not maintained




Spatial cue processing


- Pinna restoration applied (BTE & RIE) to accommodate for lost spectral characteristics due to microphone placement
- Sound level at the hearing instrument microphone is recorded to determine the interaural level difference (ILD)
- Data wirelessly exchanged between devices for compression compensation preserving the ILD



Non-Linear Amplification and ILD | Compared to the content of the

R	eSou	nd	dire	ction	าลโ	focus	:

- Provide improved audibility of desired signal
- Provide audibility for important signals
- Do not remove listener from acoustic environment
- Provide high sound quality

ReSound