Bringing it All Together: Maximizing Benefits and Hearing Aid Fitting Strategies for Bimodal Patients

NEIL A. WRIGHT, AUD GN GROUP / RESOUND MARCH 31, 2017

Disclosure

- I have the following financially relevant relationships in the service and/or product communicated, compared, evaluated and/or reviewed in this presentation.
 - Employee GN ReSound
- I have no non-financial relationships to disclose

GN Making Life Sound Better

ReSound GN

Learning Outcomes

- After this talk, the participant will be able to name 3 benefits of bimodal processing
- After this talk, the participant will be a to perform a standard bimodal hearing aid fitting
- After this talk, the participant will be able to identify the benefits of bimodal streaming (Assistive Listening Devices for Bimodal patients)

GN Making Life Sound Better

Outline

- Introductions
- History and Current Practice of Bimodal Fitting
- The Benefits of Bimodal Fitting
- Bimodal Fitting Protocol and Programming Considerations
- Benefits of Assistive Listening Devices (ALDs) and bimodal streaming
- Bimodal pairing and programming recommendations
- Conclusions & Wrap Up
- Q & A

Where we've been and where we are

Bimodal Patients: An Introduction

- Definition: Patients who utilize electrical and acoustic stimulation for hearing between ears
- History of cochlear implant candidacy
 - 1985: 1st candidates had no residual hearing
 - · No benefit from conventional amplification
- Bimodal fitting initially uncommon¹
 - First reported early 90s²
 - 10% in 2002³

- Expanded CI fitting range⁴
 - More CI patients have useable residual hearing that ever before
 - Increased utilization of bimodal stimulation
 - Majority of CI centers report fitting unilateral CI patients bimodally at least 31% of the time¹

- Siburt, H. W., & Holmes, A. E. (2015). Bimodal Programming: A Survey of Current Clinical Practice. American journal of audiology, 24(2), 243-249.
- Shallop, J. K., Arndt, P. L., & Turnacliff, K. A. (1992). Expanded indications for cochlear implantation: Perceptual results in seven adults with residual hearing. *Journal of Speech-Language Pathology and Audiology*, 16(2), 141-148.
- 8. Huart, S. A., & Sammeth, C. A. (2008). Hearing aids plus cochlear implants: Optimizing the bimodal pediatric fitting. *The Hearing Journal*, 61(11), 54-56.
- U.S. Food and Drug Administration. (2014). Press Announcements > FDA approves first implantable hearing device for adults with certain kind of hearing loss. Accessed on 7/10/2016. http://www.fda.gov/newsevents/newsroom/pressannouncements/ucm/389860.htm

Current Cochlear Implant Candidacy Criteria

- Adults (18 + years)
 - Moderate to profound bilateral sensorineural hearing loss
 - Limited amplification benefit: ≤ 50% sentence recognition in ear to be implanted & ≤ 60% in opposite ear or binaurally
- Children (2-17 years)
 - Severe-to-profound sensorineural hearing loss
- Limited benefit from binaural amplification
- Multisyllabic Lexical Neighborhood Test (MLNT) or Lexical Neighborhood Test (LNT) scores ≤ 30%
- Infants (12-24 months)
 - Profound sensorineural hearing loss
 - Limited benefit from binaural amplification
- Hybrid (18 + years)
 - Severe/Profound mid-to-high frequency SNHL
 - CNC word recognition score between 10% and 60% aided
 - Contra ear's CNC score criteria are equal to or better than that of the ear to be implanted, ≤ 80% correct.
 - Moderately severe to profound mid-to-high frequency HL in contra ear.

ochlear.com/wps/wcm/connect/us/for-professionals/products/co

Bimodal Fitting Protocol: Current Practice in the US

Bimodal Practice Survey - 2015¹

- Bimodal fitting protocol highly variable
- Bimodal hearing aid fittings occur at varying times post-CI activation
 - 18% report HA is never reprogrammed post-Cl activation
- Bimodal patients often treated by two separate audiologists¹
 - At least 50% in US survey

Taken from: Siburt, H. W., & Holmes, A. E. (2015). Bimodal Programming: A Survey of Current Clinical Practice. American Journal of Audiology, 24(2), 243-249.

ReSound GN

Bimodal Fitting Protocol: Current Practice in the US

Taken from: Siburt, H. W., & Holmes, A. E. (2015). Bimodal Programming: A Survey of Current Clinical Practice. *American Journal of Audiology*, 24(2), 243-249.

20

- 23% of bimodal fitting HA audiologists <u>DID NOT</u> use Real Ear Measures to confirm settings¹
 - 29% always performed REMs
 - Over half of all centers surveyed (53%) performed REM more that 50% of the time
- Variability in prescription fitting formula
 - 28% NAL only
 - 16% DSL only
 - 18% Proprietary only

ReSound GN

GN Making Life Sound Better

Benefits of Bimodal Fitting

Defining Bimodal Benefit

- Bimodal benefit: increase in patient performance using CI and HA compared to CI alone
 - { (CI + HA) CI Alone }
- Bimodal Performance vs. Bimodal Benefit
- Measures of Benefit
 - · Weighing the benefits
- Bimodal benefits highlight importance of binaural stimulation⁴

GN Making Life Sound Better

ReSound GN

Bimodal Stimulation Benefits: What does the research say?

- Speech Recognition in Noise⁵⁻⁷
 - Binaural Redundancy
 - · Head Diffraction
 - Binaural Squelch
- Recent research continues to highlight benefit in noise
 - Fundamental frequency cues may aid in differentiating voices in noise
- Schafer, E. C., Amlani, A. M., Seibold, A., & Shattuck, P. L. (2007). A meta-analytic comparison of binaural benefits between bilateral cochlear implants and bimodal stimulation. Journal of the American Academy of Audiology, 18(9), 760-776.
- 6. Ching, T. Y., Incerti, P., & Hill, M. (2004). Binaural benefits for adults who use hearing aids and cochlear implants in opposite ears. Ear and hearing, 25(1), 9-21
- Gifford, R. H., Dorman, M. F., McKarns, S. A., & Spahr, A. J. (2007). Combined electric and contralateral acoustic hearing: word and sentence recognition with bimodal hearing. Journal of Speech, Language, and Hearing Research, 50(4), 835-843.

Bimodal stimulation benefits: What does the research say?

Sound Localization⁸

- Bimodal stimulation provides better localization capabilities compared to CI alone
- Low frequencies improve perception of inter-aural level difference (ILD)
- Speech perception in diffuse speaker array improves with bimodal stimulation over CI alone9

Speech Prosody¹⁰

Improved ability to tell the difference between questions and statements

- Heo, J. H., Lee, J. H., & Lee, W. S. (2013). Bimodal benefits on objective and subjective outcomes for adult cochlear implant users. Korean Journal of Audiology, 17(2), 65-73.
- Potts, L. G., Skinner, M. W., Litovsky, R. A., Strube, M. J., & Kuk, F. (2009). Recognition and localization of speech by adult cochlear implant recipients wearing a digital hearing aid in the nonimplanted ear (bimodal hearing). Journal of the American Academy of Audiology, 20(6), 353-373.

 Straatman, L. V., Rietveld, A. C. M., Beijen, J., Mylanus, E. A. M., & Mens, L. H. M. (2010). Advantage of bimodal fitting in prosody perception for children using a cochlear implant and a hearing and The Journal of the Academical Society of America, 13(9)

Bimodal stimulation benefits: What does the research say?

- Prevention of auditory deprivation¹¹
- Improved sound quality^{12,13}
- Subjective comparison to CI alone
- Enhanced music perception^{12,13}
 - Bimodal patients report greater music appreciation compared to either HA or CI alone
 - Improved melody recognition

- Gifford, R. H., Driscoll, C. L., Davis, T. J., Fiebig, P., Micco, A., & Dorman, M. F. (2015). A within-subject comparison of bimodal hearing, bilateral cochlear implantation, and bilateral cochlear implantation with bilateral hearing preservation: High-performing patients. Otology & Neurotology, 36(8), 1331-1337.
- Sucher, C. M., & Mcdermott, H. J. (2009). Bimodal stimulation: benefits for music perception and sound quality. Cochlear Implants International, 10(S1), 96-99
- Wolfe, J. (2015) Cochlear Wireless Accessories for Bimodal Users. Presentation, San Antonio, TX

Bimodal Fitting Protocol and Considerations

Bimodal Patient Hearing Aid Considerations

- Aidable hearing loss in contralateral ear
 - Some research shows relationship between residual hearing aid bimodal performance
 - low-frequency PTA (125, 250 & 500 Hz) < 60 dB HL¹⁴
 - Thresholds below 500 Hz < 80 dB HL¹⁵
 - Not all research shows relationship between residual hearing and bimodal performance⁶
- Variability in Cl, HA performance
 - Lower performance in CI-only allows for greater possible bimodal benefit¹⁴
- Managing expectations for HA performance

Dorman, M. F., Cook, S., Spahr, A., Zhang, T., Loiselle, L., Schramm, D., ... & Gifford, R. (2015). Factors constraining the benefit to speech understanding of combining information from low-frequency hearing and a cochlear implant. Hearing research, 322, 107-111.
 Illg, A., Bojanowicz, M., Lesinski-Schiedat, A., Lenarz, T., & Büchner, A. (2014). Evaluation of the bimodal benefit in a large cohort of cochlear implant subjects using a contralateral

^{15.} Illg, A., Bojanowicz, M., Lesinski-Schiedat, A., Lenarz, T., & Büchner, A. (2014). Evaluation of the bimodal benefit in a large cohort of cochlear implant subjects using a contralatera hearing aid. Otology & Neurotology, 35(9), e240-e244.

GN Making Life Sound Better

Optimizing Hearing Aid Programming for Bimodal Patients

- 1. CI map needs to be stable²
 - Typically 3-6 months post-activation
- Setting gains to meet prescriptive targets utilizing Real Ear Measures
 - Fit hearing aid for ALL aidable frequencies¹⁶
 - Recommended Targets: NAL-NL2
- 3. If HA not optimized, patient may lose out on some or all bimodal benefit¹⁷
 - 23% of bimodal fitting HA audiologists <u>DID NOT</u> use Real Ear Measures to confirm settings¹
- Neuman, A. C., & Svirsky, M. A. (2013). The effect of hearing aid bandwidth on speech recognition performance of listeners using a cochlear implant and contralateral hearing aid (bimodal hearing). Ear and hearing, 34(5), 553.
- Ching, T. Y., Hill, M., Dillion, H., & van Wanrooy, E. (2004). Fitting and evaluating a hearing aid for recipients of a unilateral cochlear implant: The NAL approach. *Hearing Review*, 11, 14-23.
 GN Making Life Sound Better

Importance of Validation: Benefits of setting to target

Sentence Perception

- BKB sentences in quiet and in noise
- Significantly better percent correct using verified HA settings in bimodal fitting

Functional Performance

- Functional questionnaire given to subjects' parents
- Significantly better functional performance with verified HA settings in bimodal fitting

Localization Errors

- Localization tested in 180° horizontal arch around subject
- Significantly lower error rate with verified HA settings in bimodal fitting

Ching et al 200118

- compared bimodal stimulation with current HA settings to verified settings in children
- Verified to NAL-RP (subjects wore linear hearing aids) and loudness balanced with CI
- Compared performance on sentence perception, functional performance, and localization

18. Ching, T. Y., Psarros, C., Hill, M., Dillon, H., & Incerti, P. (2001). Should children who use cochlear implants wear GN hearing aids in the opposite ear?. *Ear and hearing*, 22(5), 365-380.

Hearing Aid Fitting Algorithm: NAL-RP vs. NAL-NL2

- NAL-RP (Revised Profound) provides gain linearly
 - Designed for linear hearing aids
- NAL-NL2 provides less gain to louder sounds, preventing distortion from peak clipping
 - Provides more gain to soft sounds: Compression!
 - NAL-NL2 is Recommended fitting algorithm
- Both have shown bimodal benefit in prior research
 - Subjects had familiarity with each for given research trials
 - NAL-RP research done when linear HAs still common
- Aventa provides both options
 - WDRC, semi-linear, and linear programming options for Super Power devices

GN Making Life Sound Better

ReSound GN

Hearing Aid Programming Considerations: Band-Split Directionality

- Directionality options for monaural hearing aid fitting¹⁹
- · Omni, fixed directional, adaptive directional, SoftSwitching
- Directional options are program dependent
- ReSound utilizes Band-Split Directionality
 - Omni directional below the crossover frequency
 - Directional above the crossover frequency
 - Avoids distortion & need for artificial bass boost; Improves wind noise control; Helps maintain ITDs in low-frequencies
- Crossover frequency is adjustable
- May need crossover frequency adjustment based on patient performance, expectations
 - Limited published data on Pros/Cons of adjustment in bimodal patients

GN Making Life Sound Better 19.

Stender, T. (2016) What About the Contralateral Ear? Bimodal Programming Considerations Hearing Review. 23(4):32.

Additional hearing aid programming considerations

- Patient's preferred CI program settings
 - Have unique directionality/advanced features
- Feedback control
 - Occlusion/mostly low frequency hearing remains
- Noise Reduction and Scene Classifiers
 - Severely hearing-impaired patients can perceive benefit from activating advanced features
- Limited research on advanced features in bimodal patient populations¹⁷

GN Making Life Sound Better

Stender, T. (2016) What About the Contralateral Ear? Bimodal Programming Considerations. Hearing Review. 23(4):32

Bimodal Stimulation and Assistive Listening Devices (ALDs)

GN Making Life Sound Better

Utilization of Assistive Listening Device (ALDs) for Bimodal Patients

- Bimodal patients still struggle in difficult listening situations
- ALDs provide bilateral, bimodal direct audio input that can increase benefit beyond on ear mics
- Remote microphones
 - · Improve speech recognition in noise
 - Improve SNR
 - · Improve speech understanding at a distance
- Phone call streaming
 - · Improve speech understanding on the phone
 - · No need to find the "Sweet Spot"

GN Making Life Sound Better

ReSound GN

Developing a Hearing System: Incorporating Bimodal Streaming

- Research shows bimodal patients benefit from bilateral remote microphone audio input
 - 1st studies used FM¹⁷
 - · Proprietary connections proven effective
- Benefits from Remote Microphones in noise¹²
 - Bimodal streaming testing sentence recognition in noise
 - AzBio sentence test
 - Significant improvements in sentence recognition in noise using remote microphone

Wolfe, J. Cochlear Wireless Accessories for Bimodal Users. Presentation, San Antonio, TX, 2015

ReSound GN

 Schafer, E. C., & Thibodeau, L. M. (2006). Speech recognition in noise in children with cochlear implants while listening in bilateral, bimodal, and FM-system arrangements. *American Journal of Audiology*, 15(2), 114-126.

ReSound Multi Mic / Cochlear Mini Mic 2+ Advantages

2.4 GHz Streaming benefits

- No intermediary device
- · True bimodal streaming
- · Robust & reliable connection
- Long range of transmission
- Flexible volume and mic balance controls
- Backwards compatible for previous ReSound 2.4 GHz devices

Multi Mic Features

- Directional mic
- · Omni/table mic mode
- Line-in
- DAI compatible
 - Streams DAI bimodally
- Built-in Telecoil
- Wireless range >80 feet
- (clear line of sight)
- Drop Detection

 Preliminary data suggests that bimodal streaming via the Multi Mic/Mini Mic 2+ provides improved SNR benefit over previous Mini Mic data particularly at lower SNR ratios

GN Making Life Sound Better

Bimodal Streaming Benefits on the Telephone

- Study designed to test bimodal phone calls over open air vs through bimodal phone streaming accessory²¹
 - · Tested in quiet and in noise
- Benefits from bimodal phone call streaming
 - Significant benefit in word recognition when using Phone Clip + for Bimodal streaming over Bimodal acoustic option
- Non-proprietary bimodal streaming options
 - FM, T-coil programs & Tcoil/loop streamers

Word recognition on the Phone with & without Phone Clip+ Phone streamer

FIG. 4. Average word recognition in the quiet and noise conditions over the mobile telephone.

From: Wolfe, J., Morais, M., & Schafer, E. (2016). Speech Recognition of Bimodal Cochlear Implant Recipients Using a Wireless Audio Streaming Accessory for the Telephone. *Otology & Neurotology*, 37(2), e20-e25.

ReSound GN

 Wolfe, J., Morais, M., & Schafer, E. (2016) Speech Recognition of Bimodal Cochlear Implant Recipients Using a Wireless Audio Streaming Accessory for the Telephone. Otology & Neurology. 37:e20-e25.

Bimodal ALD programming considerations Microphone Balance Mic balance to achieve 2:1 ratio of mic to HA Syllabic Streamer BassBoost: Phone Accessory DFS Ultra II: Off • Mic balance to achieve 2:1 ratio of mic to HA ● On ○ Off Auto DFS: **Directionality** Off Expansion: · Hearing aid microphones will be in Omni Off Sound Shaper: **Streamer BassBoost** NoiseTracker II: **Gain Settings** HI Mic / TV: Independent of other HA programs HI Mic / Micro-Multi Mic: Phone & remote mic streaming are separate programs Autorelate to All-Around (after REM) GN Making Life Sound Better

ReSound Apps for Added Control

- Bimodal Fittings require Phone Clip +
- Still compatible with Smart App for ReSound Linx2 & ENZO2 devices
 - Requires Apple iPhone 5 and beyond or Samsung Galaxy S4, Note 4 and beyond
 - Bass/Treble controls, Geotag, Find My Hearing Aid functions
- ReSound Control App will work with all other smartphones
 - Control volume, change program, change HA/streaming volume independently

GN Making Life Sound Better

ReSound GN

Bimodal AR Perceptual Training: iAngel App

- App based version of Angel Sounds – based on CAST
- Several Module choices based on patient skill level & focus area
- Various different modules:
 - Consonants, vowels, environmental sounds, food names, animal names
- Choose level of difficulty, number of trials, number of choices
 - Change the listening condition: quiet, phone or café
 - Change speaking rate

Advancements in Video Chat Apps

- Video Chat apps (FaceTime) studies showing growing role for wireless technology in speech perception
- Jespersen & Kirkwood²³ tested bilateral, severely hearingimpaired HA users speech perception during phone calls in audio & audiovisual conditions
- Results showed significantly higher performance in audiovisual conditions
- Even higher when bilaterally streamed (vs unilateral)
- Needs investigation in bimodal population – may lead to increased phone benefit

Jespersen, C., & Kirkwood, B. 2015. Speech Intelligibility Benefits of FaceTime. *Hearing Review.* 21(2):28.

Conclusions and Future Considerations

- Bimodal stimulation has significant patient benefits
- Hearing aid must be fit correctly to ensure bimodal benefit!
- Bimodal wireless streaming has proven benefits in difficult listening situations
- If no bimodal benefit perceived, consider second implant
- Future research is needed to further investigate:
 - HA fitting strategies beyond NAL-NL2
 - · Benefits of advanced sound processing & ear-to-ear communication between CI and HA
 - Further research into the role of residual hearing in bimodal performance

ReSound GN

Questions?
Thank You! nwright@gnresound.com

References

- Siburt, H. W., & Holmes, A. E. (2015). Bimodal Programming: A Survey of Current Clinical Practice. American journal of audiology, 24(2), 243-249.
- Shallop, J. K., Arndt, P. L., & Turnacliff, K. A. (1992). Expanded indications for cochlear implantation: Perceptual results in seven adults with residual hearing. Journal of Speech-Language Pathology and Audiology, 16(2), 141-148.
- Huart, S. A., & Sammeth, C. A. (2008). Hearing aids plus cochlear implants: Optimizing the bimodal pediatric fitting. The Hearing Journal, 61(11), 54-56.
- U.S. Food and Drug Administration. (2014). Press Announcements > FDA approves first implantable hearing device for adults with certain kind of hearing loss. Accessed on 7/10/2016. http://www.fda.gov/newsevents/newsroom/pressannouncements/ucm389860.htm
- 5. Schafer, E. C., Amlani, A. M., Seibold, A., & Shattuck, P. L. (2007). A meta-analytic comparison of binaural benefits between bilateral cochlear implants and bimodal stimulation. Journal of the American Academy of Audiology, 18(9), 760-776.
- Ching, T. Y., Incerti, P., & Hill, M. (2004). Binaural benefits for adults who use hearing aids and cochlear implants in opposite ears. Ear and hearing, 25(1), 9-21.
- Gifford, R. H., Dorman, M. F., McKarns, S. A., & Spahr, A. J. (2007). Combined electric and contralateral acoustic hearing: word and sentence recognition with bimodal hearing. Journal of Speech, Language, and Hearing Research, 50(4), 835-843.
- Heo, J. H., Lee, J. H., & Lee, W. S. (2013). Bimodal benefits on objective and subjective outcomes for adult cochlear implant users. Korean Journal of Audiology, 17(2), 65-73.
- Potts, L. G., Skinner, M. W., Litovsky, R. A., Strube, M. J., & Kuk, F. (2009). Recognition and localization of speech by adult cochlear implant recipients wearing a digital hearing aid in the nonimplanted ear (bimodal hearing). Journal of the American Academy of Audiology, 20(6), 353-373.
- Straatman, L. V., Rietveld, A. C. M., Beijen, J., Mylanus, E. A. M., & Mens, L. H. M. (2010). Advantage of bimodal fitting in prosody perception for children using a cochlear implant and a hearing aid. The Journal of the Acoustical Society of America, 128(4), 1884-1895. 10.
- Gifford, R. H., Driscoll, C. L., Davis, T. J., Fiebig, P., Micco, A., & Dorman, M. F. (2015). A within-subject comparison of bimodal hearing, bilateral cochlear implantation, and bilateral cochlear implantation with bilateral hearing preservation: High-performing patients. Otology & Neurotology, 36(8), 1331-1337. 11.
- Sucher, C. M., & Modermott, H. J. (2009). Bimodal stimulation: benefits for music perception and sound quality. Cochlear Implants International, 10(S1), 96-99. 12.
- 13. Wolfe, J. (2015) Cochlear Wireless Accessories for Bimodal Users. Presentation, San Antonio, TX.
- Illig, A., Bojanowicz, M., Lesinski-Schiedat, A., Lenarz, T., & Büchner, A. (2014). Evaluation of the bimodal benefit in a large cohort of cochlear implant subjects using a contralateral hearing aid. Otology & Neurotology, 35(9), e240-e244.
- Dorman, M. F., Cook, S., Spahr, A., Zhang, T., Loiselle, L., Schramm, D., ... & Gifford, R. (2015). Factors constraining the benefit to speech understanding of combining information from low-frequency hearing and a cochlear implant. Hearing research, 322, 107-111. 15.
- 16. Neuman, A. C., & Svirsky, M. A. (2013). The effect of hearing aid bandwidth on speech recognition performance of listeners using a cochlear implant and contralateral hearing aid (bimodal hearing). Ear and hearing, 34(5), 553.
- Ching, T. Y., Hill, M., Dillion, H., & van Wanrooy, E. (2004). Fitting and evaluating a hearing aid for recipients of a unilateral cochlear implant: The NAL approach. Hearing Review, 11, 14-23. 17.
- Ching, T. Y., Psarros, C., Hill, M., Dillon, H., & Incerti, P. (2001). Should children who use cochlear implants wear hearing aids in the opposite ear?. Ear and hearing, 22(5), 365-380. 18.
- Stender, T. (2016) What About the Contralateral Ear? Bimodal Programming Considerations. Hearing Review. 23(4):32.
- 20. Schafer, E. C., & Thibodeau, L. M. (2006). Speech recognition in noise in children with cochlear implants while listening in bilateral, bimodal, and FM-system arrangements. American Journal of Audiology, 15(2), 114-126.
- 21 Wolfe, J., Morais, M., & Schafer, E. (2016) Speech Recognition of Bimodal Cochlear Implant Recipients Using a Wireless Audio Streaming Accessory for the Telephone. Otology & Neurology. 37:e20-e25.
- Zhang, T., Dorman, M. F., Fu, Q. J., & Spahr, A. J. (2012), Auditory training in patients with unilateral cochlear implant and contralateral acoustic stimulation. Ear and hearing, 33(6), e70. 22.
- 23. Jespersen, C. T., & Kirkwood, B. Speech Intelligibility Benefits of FaceTime: Advantages for Everybody Published on August 18, 2016.

