#### continued

If you are viewing this course as a recorded course after the live webinar, you can use the scroll bar at the bottom of the player window to pause and navigate the course.

#### continued

This handout is for reference only. It may not include content identical to the powerpoint. Any links included in the handout are current at the time of the live webinar, but are subject to change and may not be current at a later date.



# Applications of direct-to-consumer hearing devices for adults with hearing loss

Vinaya Manchaiah, AuD, MBA, PhD, F-AAA

Jo Mayo Endowed Professor

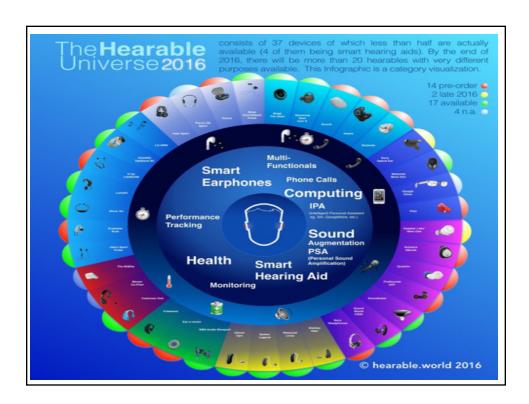
Department of Speech and Hearing Sciences
Lamar University

Beaumont, Texas

vmanchaiah@lamar.edu

www.vinayamanchaiah.com

No financial and non-financial disclosures to report

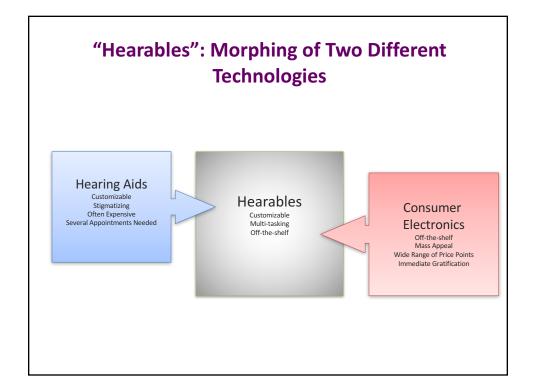



#### **Learning Outcomes**

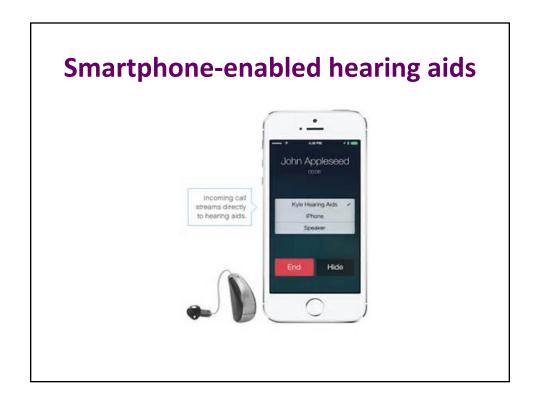
Direct-to-consumer hearing devices have become popular in recent days. This talk will present a summary of literature review on applications of direct-to-consumer hearing devices for adults with hearing loss. The summary is presented on three themes, including: (1) electroacoustic measurements; (2) consumer surveys; and (3) outcome evaluation studies.

#### As a result of this course, participants will be able to:

- 1) Define and name different types of direct-to-consumer hearing devices
- 2) Discuss the benefits and limitations of direct-to-consumer hearing devices
- 3) Discuss the practice implications of direct-to-consumer hearing devices







#### **Types of Hearing-Related Technologies**

- Medical Devices for Hearing Loss
  - Hearing aids
  - Over-the-counter wearable hearing devices (proposed)
- Consumer Electronics Not Intended for Hearing Loss
  - Personal Sound Amplification Systems (PSAPs)
- Hearing Assistive Devices
  - FM, infrared, loop systems
- Communication Technologies
  - Captioning, emergency information, etc.

NASEM Report (2016)











#### **Personal Sound Amplification Products (PSAPs)**

- De-featured hearing aids
- Some require app to adjust



### **Cordless Multi-Taskers**



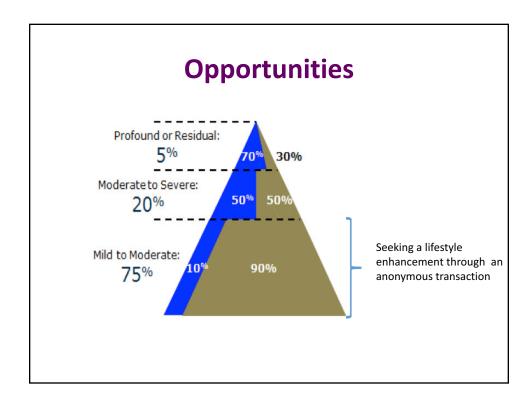


### **Neck-band Multi-taskers**

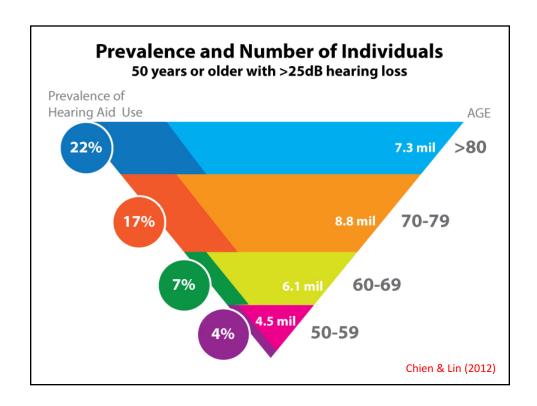


# **Smartphone Apps**









#### What should we call them?











#### **Focus of this Talk**

In this talk, we focus on three categories of direct-to-consumer hearing devices:

- Personal Sound Amplification Systems (PSAPs)
- Over-the-counter (OTC) hearing devices
- Direct-mail hearing aids



### **Terminologies**

- Hearing aids
- Over-the-counter (OTC) hearing aids
- Over-the-counter (OTC) hearing devices
- Direct-mail hearing aids
- Personal Sound Amplification Systems (PSAPs)
- Hearable
- Smartphone based applications (Apps)

## **Definitions / Comparison**

|                                              | Traditional<br>Hearing aids | Over-the-Counter<br>hearing aids (OTC)<br>/ Direct mail<br>hearing aids | Personal Sound<br>Amplification<br>Products (PSAPs) | Smartphone-<br>based<br>Amplification<br>Apps |
|----------------------------------------------|-----------------------------|-------------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------|
| Regulated under FDA                          | Yes                         | Yes                                                                     | No                                                  | No                                            |
| Professional Consultation<br>Needed          | Yes                         | No                                                                      | No                                                  | No                                            |
| Average Price Range per<br>Device (in \$USD) | \$1000-5000                 | \$200-500                                                               | \$20-400                                            | \$0-10                                        |
| Intended Target Group                        | PHL                         | PHL                                                                     | PNH                                                 | PNH                                           |
| Intended User                                | PHL                         | PHL                                                                     | PNH                                                 | PHL & PNH                                     |
| Typical Consumer Image                       | Stigmatizing                | Stigmatizing                                                            | Stigmatizing to mass appeal                         | Mass appeal                                   |

**Note:** PHL=Person with Hearing Loss; PNH=Person with Normal Hearing

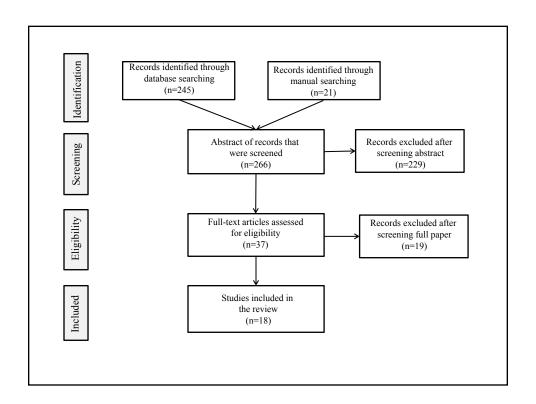


#### **Search strategy**

- A literature search was conducted during October-December 2016 through EBSCOhost, which which including: Cumulative Index to Nursing and Allied Health (CINAHL); MEDLINE; and PsycINFO.
- Manual search of conference papers
- Two researchers conducted the search independently to ensure no existing literature in this area had been missed.
- Recent search during July 2017

#### Search words

The search was conducted with the words/phrase:


- cheap hearing aids;
- personal sound amplification systems;
- personal sound amplification products (PSAPs);
- personal sound amplification devices;
- direct mail hearing aids;
- over-the-counter (OTC) hearing aids;
- direct-to-consumer hearing aids;
- direct-to-consumer hearing devices;
- hearing amplifier;
- sound amplifier;
- basic hearing aid;
- self-fitting hearing aid;
- affordable hearing aid; and
- hearable(s)



#### **Inclusion criteria**

<u>Papers were excluded if the study did not meet the</u> criteria below:

- Population adults with hearing loss
- Condition electroacoustic measurements, consumer market surveys, and outcome studies
- Context studies focusing on direct-to-consumer hearing devices
- Study type any study design
- Language studies that were published in English
- Timescale no restrictions were applied





#### **Summary of literature: Main themes**

- Electroacoustic measurements (5 studies)
  - Cheng & McPherson (2000) Hong Kong Peer reviewed journal
  - Callaway & Punch (2008) USA Peer reviewed journal
  - Chan & McPherson (2015) Hong Kong Peer reviewed journal
  - Smith et al. (2016) USA Professional magazine
  - Reed et al. (2017) USA Peer reviewed journal
- Survey of consumers (5 studies)
  - Kochkin (2010) USA Professional magazine
  - Kochkin(2014) USA Professional magazine
  - Consumer Electronics Association (2014) USA Consumer organization report
  - JapanTrack (2012) Japan Consumer organization report
  - JapanTrack (2015) Japan Consumer organization report
- Outcome evaluation (8 studies)
  - McPherson & Wong (2005) Hong Kong Peer reviewed journal
  - Sacco et al. (2016) France Peer reviewed journal
  - Xu et al. (2015) USA Conference paper
  - Tedeschi & Kihm (2016) USA Professional magazine
  - Mamo et al. (2017) USA Peer reviewed journal
  - Niemal et al. (2017) USA Peer reviewed journal
  - Humes et al. (2017) USA Peer reviewed journal
  - Brody et al. (2017) USA Conference paper

#### **Electroacoustic measurements**



# **OTC** devices physical appearance



Chan & McPhearson (2015)

### **OTC** device features

TABLE 1: Summary of the characteristics of the ten OTC hearing aids

|   | TABLE 1: Summary of the characteristics of the ten OTC nearing aids. |       |             |                         |              |                           |                           |                         |         |  |
|---|----------------------------------------------------------------------|-------|-------------|-------------------------|--------------|---------------------------|---------------------------|-------------------------|---------|--|
|   | Models                                                               | Style | Cost (\$US) | Country of manufacturer | Volume range | Special features          | Operation manual          | Technical specification | Battery |  |
| Α | LingYin HA 611B                                                      | BW    | 41          | China                   | 1-5          | 2 tone controls (N; H)    | Yes (Chinese)             | Yes                     | AAA     |  |
| В | Hopewell HAP-40                                                      | BW    | 22          | Unknown                 | No marking   | _                         | Yes (English and Spanish) | No                      | AAA     |  |
| С | Axwa EX-12D                                                          | BW    | 49          | China                   | 1-8          | 3 tone controls (N; H; L) | Yes (English)             | Yes                     | AA      |  |
| D | JNC-MHA-BTE130                                                       | BTE   | 47          | Korea                   | 1-3          | _                         | Yes (Chinese and English) | Yes                     | 675     |  |
| E | UP-6411                                                              | BTE   | 52          | Japan*                  | 1-6          | _                         | Yes (English)             | Yes                     | 675     |  |
| F | ShengDe V-163                                                        | BTE   | 51          | China                   | 1-4          | _                         | Yes (Chinese)             | Yes                     | 675     |  |
| G | Axwa OM-188                                                          | BTE   | 55          | China                   | 1-4          | _                         | Yes (English)             | Yes                     | 675     |  |
| H | Powertone HAP-F883                                                   | ITE   | 114         | Unknown                 | 1-5          | _                         | Yes (English)             | Yes                     | 13      |  |
| I | JNC-MHA-ITE 110                                                      | ITE   | 47          | Korea                   | No marking   | _                         | Yes (Chinese and English) | Yes                     | 312     |  |
| J | Axon K-80                                                            | ITE   | 37          | Unknown                 | No marking   | _                         | Yes (English)             | Yes                     | 312     |  |

Note. #: no information of manufacturer is printed on packaging, but the salesperson claimed that it was a Japanese brand; BW: body-worn; BTE: behind-the-ear; ITE: in-the-ear; N: normal; H: high; L: low; technical specification: manufacturer's information on electroacoustic characteristics of the hearing aid.

Chan & McPhearson (2015)



#### **Electroacoustic measurements**

Electroacoustic measurements

- 2-cc coupler measurements
- (1) OSPL 90 curve
- (2) HFA FOG
- (3) Frequency response curve
- (4) EIN
- (5) THD
- (6) Battery current drain
- (7) I/O curve
- (8) Coupler gains at different volume settings: starting 1/4, 2/4, 3/4, and full-on positions

Simulated real-ear measurement

(1) Feedback measurement





Chan & McPhearson (2015)

#### **Electroacoustic characteristics**

Table 3: Summary of the results of OTC hearing aids: 2-cc coupler measurements.

|          | OSF                       | PL 90                |              | THD (%)              |          |        |        |         |                      |
|----------|---------------------------|----------------------|--------------|----------------------|----------|--------|--------|---------|----------------------|
| OTC      | Peak<br>frequency<br>(Hz) | Peak SPL<br>(dB SPL) | HFA FOG (dB) | Frequency range (Hz) | EIN (dB) | 500 Hz | 800 Hz | 1.6 kHz | Battery life (hours) |
| A tone N | 1600                      | 127.6                | 44.0         | 375-4000             | 28.4     | 1.9    | N/A    | 0.4     | DNT                  |
| A tone L | 1600                      | 128.5                | 39.7         | 667-4667             | 28.5     | N/A    | N/A    | 0.7     | DNT                  |
| В        | 700                       | 129.8                | 29.0         | 354->8000            | 35.2     | 0.3    | 0.1    | 0.7     | DNT                  |
| C tone N | 1400                      | 126.6                | 52.8         | <200-3667            | 26.4     | 2.3    | N/A    | 0.1     | DNT                  |
| C tone H | 1400                      | 126.3                | 52.5         | <200-3667            | 25.5     | 2.4    | N/A    | 0.3     | DNT                  |
| C tone L | 1400                      | 126.1                | 41.8         | 396-3667             | 29.7     | 3.3    | 3.1    | 0.1     | DNT                  |
| D        | 1400                      | 129.3                | 37.2         | <200-3667            | 30.6     | 2.1    | 1.2    | 0.5     | 142                  |
| E        | 1700                      | 118.8                | 19.1         | <200-4667            | 38.1     | 4.2    | N/A    | 0.1     | 182                  |
| F        | 1400                      | 125.9                | 32.6         | <200-3833            | 24.9     | 1.4    | N/A    | 0.3     | 233                  |
| G        | 1600                      | 126.8                | 30.6         | <200-5333            | 33.2     | 2.7    | N/A    | 0.2     | 235                  |
| Н        | 800                       | 124.4                | 14.2         | <200-4333            | 45.6     | 6.6    | 1.2    | 10.1    | 307                  |
| I        | 2000                      | 113.1                | 20.9         | <200-5000            | 31.4     | 23.5   | 46.5   | 10.8    | 154                  |
| J        | 700                       | 118.4                | 7.6          | <200-4667            | 52.9     | 4.8    | 0.8    | 4.6     | 212                  |

Note. Peak SPL: peak sound pressure level; N/A: not applicable. According to the 12 dB rule, THD does not need to be measured at that frequency when its second harmonic was amplified 12 dB more than the first harmonic in the frequency response curve (Frye, 2010 [20]).

DNT: did not test. Measurement of battery current drain was not conducted since no battery substitution pills for AA and AAA battery size were available.

Chan & McPhearson (2015)



# Summary of electroacoustic characteristics

| Frequency range (Hz)          | <200 (low) to 8000 (high)             |
|-------------------------------|---------------------------------------|
| OSPL-90 – Peak frequency (Hz) | 200 to 2000 (1400 to 2000 more often) |
| OSPL-90 – Peak SPL (dB SPL)   | 105.6 to 133                          |
|                               |                                       |
| TDH (%) – 500 Hz              | 0 to 6.66 (outliers 15.6 & 23.5)      |
| TDH (%) – 800 to 1000 Hz      | 0.02 to 9.7 (outliers 30 & 46.5)      |
| TDH (%) – 1600 to 2000 Hz     | 0 to 4.6 (outliers 10.1 & 10.8)       |
|                               |                                       |
| EIN (dB)                      | 2.4 to 52.8                           |
|                               |                                       |
| Battery life (hours)          | 37 to 194                             |

Manchaiah et al. (2017)

Chan & McPhearson (2015)

### Simulation of output on KEMAR

Table 2: Estimated hearing thresholds of elderly people based on Stenklev and Laukli data [23].

|                                     | Frequency (Hz) |      |      |      |      |      |  |  |
|-------------------------------------|----------------|------|------|------|------|------|--|--|
|                                     | 250            | 500  | 1000 | 2000 | 3000 | 4000 |  |  |
| Estimated hearing threshold (dB HL) | 23.4           | 23.6 | 27.1 | 38.1 | 51.8 | 55.8 |  |  |

Note. These values show mean hearing thresholds of elderly people aged 60 or above, including both male and female and left and right ears.

 ${\it Table 6: Judgment of matching prescriptive targets for presbycus is with stricter criterion.}$ 

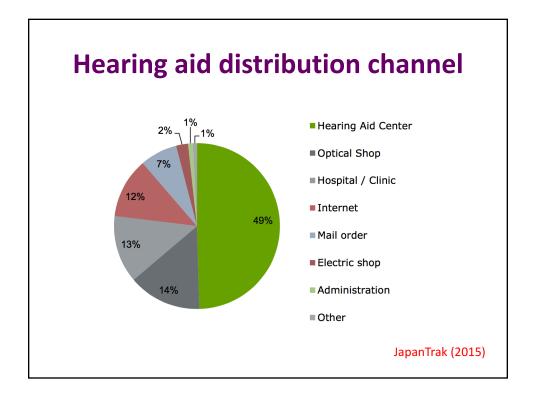
| OTC      |                   | Matching         | the prescrip    | ptive targets   | for presbycu | sis?            | Match the targets at four or more frequencies |
|----------|-------------------|------------------|-----------------|-----------------|--------------|-----------------|-----------------------------------------------|
| OIC      | $0.25\mathrm{Hz}$ | $0.5\mathrm{Hz}$ | $1\mathrm{kHz}$ | $2\mathrm{kHz}$ | 3 kHz        | $4\mathrm{kHz}$ | Match the targets at four or more frequencies |
| A tone N | X                 | X                | X               | X               | X            | √               | ×                                             |
| A tone L | X                 | ✓                | ✓               | X               | ✓            | ✓               | ✓                                             |
| В        | X                 | X                | ✓               | √               | X            | ✓               | X                                             |
| C tone N | X                 | ×                | X               | X               | ✓            | ×               | ×                                             |
| C tone H | X                 | ×                | X               | X               | ✓            | ✓               | ×                                             |
| C tone L | X                 | X                | X               | √               | ✓            | X               | X                                             |
| D        | X                 | ×                | X               | X               | ✓            | ×               | ×                                             |
| E        | ✓                 | ×                | X               | X               | X            | ×               | ×                                             |
| F        | X                 | ✓                | ✓               | ✓               | ✓            | ×               | ✓                                             |
| G        | ✓                 | ✓                | ✓               | ✓               | ✓            | ×               | ✓                                             |
| Н        | X                 | ✓                | ✓               | X               | X            | ×               | ×                                             |
| I        | X                 | ×                | X               | √               | X            | ×               | ×                                             |
| I        | √                 | ✓                | X               | X               | ×            | X               | Х                                             |



# Some conclusions based on electroacoustic measurements

- Most of the devices (nearly 90% based on the literature) do not meet the criteria in terms of OSPL-90, THD & EIN.
- Measurement of output on simulated hearing loss on KEMAR suggested that most devices are not suitable for high-frequency hearing loss patterns, as they had more gain in low frequencies
- Direct-to-consumer hearing devices should be chosen carefully

**Survey of consumers** 

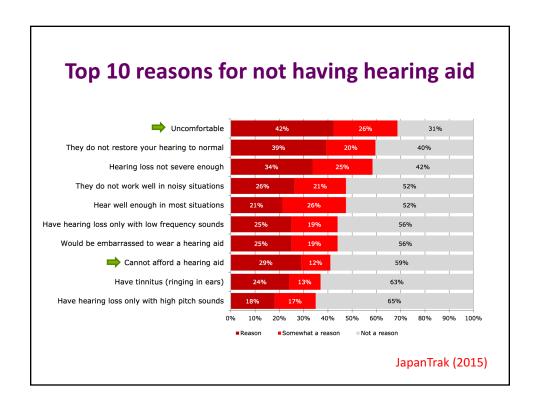



### **Survey of consumers**

- Kochkin (2010) USA Professional magazine
- Kochkin(2014) USA Professional magazine
- Consumer Electronics Association (2014) USA Consumer organization report
- JapanTrack (2012) Japan Consumer organization report
- JapanTrack (2015) Japan Consumer organization report



Not peer-reviewed






# Hearing aid adoption and satisfaction rates

| Country              | France | Germany | UK   | USA  | Japan |
|----------------------|--------|---------|------|------|-------|
| Adoption rates (%)   | 30.4   | 34      | 41.1 | 30.2 | 13.5  |
| Overall satisfaction | 84     | 70      | 77   | 81   | 39    |

MarkTrak (2014), EuroTrak (2015), JapanTrak (2015)





# Some conclusions based on consumer surveys

- 5-19% of people with hearing loss purchase hearing aids through direct mail or online.
- Two thirds (i.e., nearly 75%) of direct-mail and PSAP owners were candidates for custom hearing aids, although estimates suggested that less than 18% users substitute PSAPs for custom hearing aids.
- Direct mail hearing aids and PSAPs were associated with lower satisfaction when compared to hearing aids that were purchased through hearing healthcare professionals.
- It is possible, however, that adults who purchase lower priced, direct-to-consumer products have lower expectations relative to individuals purchasing hearing aids through the professional channel.

#### **Outcome evaluation**



# Effectiveness of an affordable hearing aid with elderly persons

- This study evaluated the effectiveness of a recently developed, low-cost OTC HA with elderly people with mild to mode mixed or SNHL.
- Two aspects were focused upon: (1) objective change in the participants' aided hearing measures; and (2) the self-reported performance and benefit obtained from the hearing aid.
- The device was rated by the majority of participants as providing benefit, with 16 of the participants (84%) using their hearing aid from at least 1 to over 8 h each day and with all participants considering the low-cost instrument 'worth the trouble' of wearing.
- Both structured questionnaires (i.e., IOI-HA, COSI) and open- ended interviews showed positive outcomes.
- Negative comments focused on difficulties with either acoustic feedback or background noise annoyance while wearing the hearing instrument.

McPherson & Wong (2005)

# Clinical evaluation of an over-the-counter hearing aid (TEO First®) in elderly patients suffering of mild to moderate hearing loss

- Assessed the clinical value of a new OTC hearing aid device (TEO First®) in the elderly.
- There was an improvement of hearing with TEO First® in silence or in noise.
- After one month of use of the device, quality of life has improved with regards to the following parameters:
  - decrease of perceived hearing difficulties during conversation without background noise
  - decrease of perceived hearing difficulties in conversation with several people
  - decrease of negative emotions while watching TV
  - decrease of negative emotions during conversation without background noise
  - decrease of negative emotions during conversation in noisy background
  - decrease of negative emotions during conversation with several people
- The acceptability of the device was low to moderate.

Sacco et al. (2016)



# Hearing Care Intervention for Persons with Dementia: A Pilot Study

- Test a novel hearing intervention for persons with dementia and family caregivers delivered in outpatient settings.
- Care-givers believed the intervention was beneficial, and most participants with dementia wore the amplification device daily.
- For the depression and neuropsychiatric outcome measures, participants with high symptom burden at baseline showed improvement at 1-month post-intervention.
- The Memory-HEARS intervention is a low-cost, low-risk, non-pharmacologic approach to addressing hearing loss and behavioral symptoms in patients with dementia.

Mamo et al. (2017)

The Effects of Service-Delivery Model and Purchase Price on Hearing-Aid
Outcomes in Older Adults: A Randomized Double- Blind Placebo-Controlled
Clinical Trial

- The objectives of this study were to determine efficacy of hearing aids in older adults using audiology best practices, to evaluate the efficacy of an alternative OTC intervention, and to examine the influence of purchase price on outcomes for both service-delivery models.
- A single-site, prospective, double-blind placebo-controlled randomized trial with three parallel branches: (a) audiology best practices (AB), (b) consumer decides OTC model (CD), and (c) placebo devices (P).
- Hearing aids are efficacious in older adults for both AB and CD servicedelivery models. CD model of OTC service delivery yielded only slightly poorer outcomes than the AB model.
- Purchase price had no effect on outcomes

Humes et al. (2017)



| Article Design Summaries            |                                                                                                              |                                                                                                                          |                                             |  |  |  |  |  |
|-------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|--|--|--|--|--|
| Author, Year,<br>Location           | Study Design                                                                                                 | Population                                                                                                               | Study Length                                |  |  |  |  |  |
| Humes et al<br>(2017) USA           | Prospective, Quantitative,<br>Randomized, double-blind,<br>Placebo-controlled trial with<br>three categories | n=154; Mean age 69.1 yrs<br>(across all 3 groups).                                                                       | 6-weeks; with additional 4-weeks            |  |  |  |  |  |
| Sacco et al<br>(2016) France        | Prospective, Quantitative, Single Focus                                                                      | n=31; Mean age 78.3 yrs.                                                                                                 | One month                                   |  |  |  |  |  |
| Nieman et al<br>(2016) USA          | Pilot study, Prospective,<br>Quantitative, Randomized,<br>Control group                                      | n=15 dyads; Participants mean age 70.1 yrs. CP at least 18 yrs old.                                                      | Three month; with 3 & 6 month follow-up     |  |  |  |  |  |
| Mamo et al<br>(2017) USA            | Pilot Study, Prospective,<br>Quantitative, and Qualitative                                                   | n=20 dyads; Participants mean<br>age 76.9 yrs, mild cognitive<br>impairment - Dementia.<br>Caregivers mean age 64.3 yrs. | One month; with a one month follow-up       |  |  |  |  |  |
| McPherson &<br>Wong (2005)<br>China | Prospective, Quantitative,<br>Qualitative                                                                    | n=19; mean age 73 yrs.                                                                                                   | Four months; with measures taken throughout |  |  |  |  |  |

Tran et al. (2017, Manuscript in preparation)

|                               | Devices Product Information                                                        |                                           |                                                                  |                                                                                                                                                                                              |  |  |  |  |  |
|-------------------------------|------------------------------------------------------------------------------------|-------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Source                        | Device Used                                                                        | Cost                                      | Device Type                                                      | Device Features                                                                                                                                                                              |  |  |  |  |  |
| Humes et<br>al (2017)         | ReSound Alera 9<br>Mini-BTE                                                        | \$100 ea                                  | FDA approved hearing aid                                         | Advanced Signal Processing: Multi-<br>channel compression; Feedback<br>cancellation; Noise reduction; Directional<br>microphones; Four programs.                                             |  |  |  |  |  |
| Sacco et al<br>(2016)         | TEO First <sup>®</sup>                                                             | \$250 ea                                  | OTC developed<br>in France                                       | Amplification Range 0-22 dB; Digital Signal Processing; Multiband dynamic compression; Two programs (calm & noisy); Volume control; Rechargeable battery.                                    |  |  |  |  |  |
| Nieman et<br>al (2016)        | Sound World<br>Solutions CS-50;<br>Williams Sound<br>Pocketalker Ultra<br>Duo Pack | \$350 (CS-<br>50); \$120<br>(Pocketalker) | CS-50: PSAP;<br>Pocketalker:<br>Assistive<br>Listening<br>Device | CS-50: Monaural device, Bluetooth, paired & programmed with smartphone, rechargeable batteries; Pocketalker: remote microphone, headphones, volume control, AAA batteries, non-programmable. |  |  |  |  |  |
| Mamo et al<br>(2017)          | Sound World<br>Solutions CS-50;<br>Williams Sound<br>Pocketalker Ultra<br>Duo Pack | \$100 - \$300                             | CS-50: PSAP;<br>Pocketalker:<br>Assistive<br>Listening<br>Device | CS-50: Monaural device, Bluetooth, paired & programmed with smartphone, rechargeable batteries; Pocketalker: remote microphone, headphones, volume control, AAA batteries, non-programmable. |  |  |  |  |  |
| McPherson<br>& Wong<br>(2005) | ReSound Avance<br>HE4                                                              | \$125 ea                                  | OCT hearing aid                                                  | Max gain of 31 dB SPL; Semi-open-cana fit; Size 10 batteries; Sound compression and volume trimmer.                                                                                          |  |  |  |  |  |

Tran et al. (2017, Manuscript in preparation)



|                            | Device Specific Uses                          |                                                                                    |                                 |                                  |  |  |  |  |  |
|----------------------------|-----------------------------------------------|------------------------------------------------------------------------------------|---------------------------------|----------------------------------|--|--|--|--|--|
| Source Humes et al (2017)  | Verification<br>of Device Fit<br>Yes, Verifit | Prescriptive Fitting Type AB: Custom fit NAL-NL2; CD: Pre-fit to common HL         | Average Daily<br>Use<br>6.3 hrs | Fitting Sides Binaural           |  |  |  |  |  |
| Sacco et al<br>(2016)      | No                                            | Pre-fit to common HL                                                               | 1 hour                          | Binaural                         |  |  |  |  |  |
| Nieman et al<br>(2016)     | No                                            | PSAP: Fit according to cell<br>phone program response;<br>ALD: Volume Control only | 1-4 hrs                         | PSAP: Monaural;<br>ALD: Binaural |  |  |  |  |  |
| Mamo et al<br>(2017)       | No                                            | PSAP: Fit according to cell<br>phone program response;<br>ALD: Volume Control only | 1 hour                          | PSAP: Monaural;<br>ALD: Binaural |  |  |  |  |  |
| McPherson &<br>Wong (2005) | Yes, Real-ear                                 | NAL-R                                                                              | 1-8 hrs                         | Monaural                         |  |  |  |  |  |

Tran et al. (2017, Manuscript in preparation)

| Delivery and Support Variations |                                                                                                                                                                                                      |                                                                                                                         |  |  |  |  |  |  |
|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Source                          | Service Delivery Method                                                                                                                                                                              | Provision of Additional Support                                                                                         |  |  |  |  |  |  |
| Humes et al (2017)              | AB: Audiology Best Practice method<br>CD: OTC self-select<br>P: AuD best Practice, but H.A. programmed to 0 dB gain.                                                                                 | AB & P: Device Orientation,<br>Communication Strategies Training<br>CD: OTC method - No additional<br>clinician support |  |  |  |  |  |  |
| Sacco et al<br>(2016)           | Audiological evaluation, pre-selected device with pre-<br>fitted hearing loss configurations; most similar to OTC<br>delivery method                                                                 | Device Orientation, OTC: No additional clinician support                                                                |  |  |  |  |  |  |
| Nieman et al<br>(2016)          | HEARS Program. Community Based, single-session<br>delivery method with clinician. Selection between PSAP<br>or ALD. Device orientation. Incorporation of CP.<br>Communication strategies AR session. | Device Orientation, Communication<br>Strategies Training, Incorporation of<br>CP                                        |  |  |  |  |  |  |
| Mamo et al<br>(2017)            | HEARS Program. Community Based, single-session<br>delivery method with clinician. Selection between PSAP<br>or ALD. Device orientation. Incorporation of CP.<br>Communication strategies AR session. | Device Orientation, Communication<br>Strategies Training, Incorporation of<br>CP                                        |  |  |  |  |  |  |
| McPherson<br>& Wong<br>(2005)   | Audiological evaluation, single device option, pre-fit to common hearing loss configuration to simulate OTC delivery model.                                                                          | OTC: No additional clinician suppor                                                                                     |  |  |  |  |  |  |

Tran et al. (2017, Manuscript in preparation)



# Some conclusions based on outcome evaluation studies

- Studies on outcome evaluation suggest a positive outcome (improved hearing in quiet and in noisy situations, improved communication, and improved activities of daily living) of OTC devices in adults with hearing loss.
- A laboratory study suggested PSAPs performed as well as hearing aids for listening in noisy situations and for listening to music, but not as well for listening to speech.
- According to a single study, the outcome of direct-to-consumer hearing devices seems to be better when hearing healthcare professionals supports users.

#### **Quality analysis**

#### Look at study findings in relation to its design & method

- Due to limited studies both peer-reviewed and non-peer reviewed work was included
- The studies on electroacoustic measurements have used conventional study designs with test box measures and simulated real-ear measures in the KEMAR.
- The consumer surveys generally used convenience sampling, which may have resulted in sampling bias.
- Studies on patient outcomes with these devices used open-trial design without control group and blinding. This may have resulted in some bias as hearing aid research has a documented placebo effect.
- Study design of existing literature in this area was found to be generally poor



#### **Quality analysis of outcome studies**

|                               | Quality Assessment |                         |                  |               |          |                       |                  |                |                   |              |                      |  |  |
|-------------------------------|--------------------|-------------------------|------------------|---------------|----------|-----------------------|------------------|----------------|-------------------|--------------|----------------------|--|--|
| Source                        | RCT                | Double-<br>Blind<br>RCT | Control<br>Group | Incl/<br>Excl | Baseline | Verify<br>H.A.<br>Fit | Analysis<br>Bias | Effect<br>Size | Power<br>Analysis | Drop-<br>out | Level of<br>Evidence |  |  |
| Humes et al<br>(2017)         | 2                  | 2                       | 2                | 2             | 2        | 2                     | 2                | 2              | 2                 | 2            | 20: High             |  |  |
| Sacco et al<br>(2016)         | 0                  | 0                       | 0                | 2             | 2        | 1*                    | 1**              | 0              | 0                 | 2            | 8: Low               |  |  |
| Nieman et<br>al (2016)        | 2                  | 0                       | 2                | 2             | 2        | 0                     | 0                | 2              | 0                 | 0            | 10: Low              |  |  |
| Mamo et al<br>(2017)          | 0                  | 0                       | 0                | 2             | 2        | 0                     | 0                | 0              | 0                 | 2            | 6: Low               |  |  |
| McPherson<br>& Wong<br>(2005) | 0                  | 0                       | 0                | 0             | 2        | 2                     | 0                | 0              | 0                 | 2            | 6: Low               |  |  |

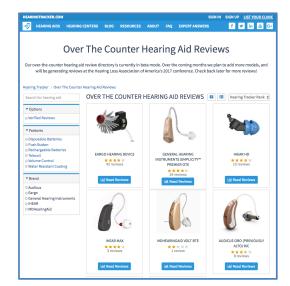
<sup>\*</sup>Unspecified type of verification

Tran et al. (2017, Manuscript in preparation)

# Some conclusions based on outcome evaluation studies with study design considerations

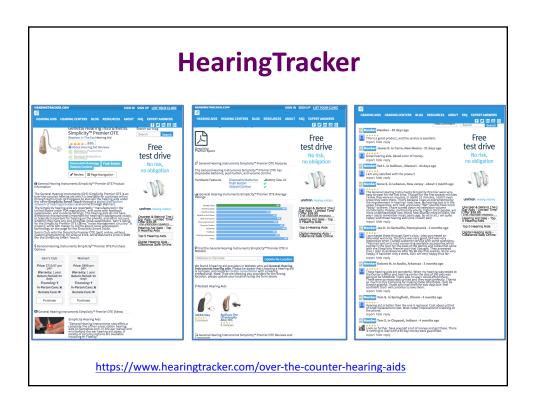
- Poor study design / Except on a study by Humes et al. (2017)
- Limited (or inadequate) sample size
- Short-term outcomes (4 weeks to 6 months)
- Hearing healthcare professionals chose the device How much do we know about the direct-to-consumer model?

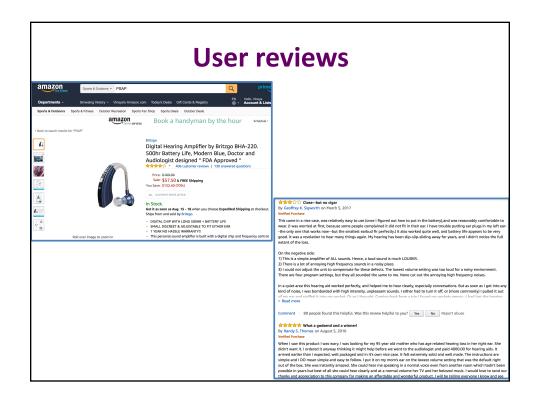



<sup>\*\*</sup>Independent study, but funded by the OTC company.

#### **Overall conclusion**

Although some devices have the capability to cause harm due to high output sound levels, the existing literature suggests a few direct-to-consumer products perform electroacoustically similar to hearing aids, have shown positive outcomes and have the potential to benefit people with hearing loss.





### HearingTracker



https://www.hearingtracker.com/over-the-counter-hearing-aids









## **Future directions**

| Domain                                                          | Specific area                                                                                                                                                                                                  |
|-----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Selection and candidacy                                         | <ul> <li>Define a specific group of individuals</li> <li>Define the context of use</li> </ul>                                                                                                                  |
| Expectations                                                    | <ul> <li>Does lower costs correlate to lower expectation</li> <li>Differences between traditional and direct-to-consumer products</li> </ul>                                                                   |
| Acoustic physical fact finding (i.e., electroacoustic measures) | <ul> <li>Test box and coupler measurements</li> <li>Simulated real-ear measures using a KEMAR</li> </ul>                                                                                                       |
| Verification                                                    | <ul><li>Real ear measures</li><li>Functional gain</li></ul>                                                                                                                                                    |
| User experience and perception                                  | Fitting comfort     Image perception     Decision making process of consumers     Use and maintenance of the device                                                                                            |
| Outcome evaluation dimensions                                   | Perceived hearing disability     Speech perception in quiet     Speech perception in noise     Communication ability     Activities and participation     Health related quality of life     Tinnitus distress |
| Factors that may influence the outcome                          | Socio-economic status     Cost of the device     Health literacy     Guidance and support from hearing healthcare professional     Aural rehabilitation                                                        |
| Economic evaluation                                             | Cost analysis     Cost-benefit analysis     Cost-effectiveness analysis     Cost-utility analysis                                                                                                              |

# Questions





#### Reference

Clinical Interventions in Aging

Dovepress

#### Applications of direct-to-consumer hearing devices for adults with hearing loss: a review

Clinical intervenuous arr young 18 May 2017 Number of times this article has been viewed

Vinaya Manchaiah<sup>1⊸</sup> Brian Taylor<sup>5</sup> Ashley L Dockens<sup>1</sup> Nicole R Tran<sup>1</sup> Kayla Lane<sup>1</sup> Mariana Castle<sup>1</sup> Vibhu Grover<sup>1</sup>

Background: This systematic literature review is aimed at investigating applications of direct-to-consumer hearing devices for adults with hearing loss. This review discusses three categories of direct-to-consumer hearing devices: 1) personal sound amplification products (PSAPs), 2) direct-mail hearing aids, and 3) over-the-counter (OTC) hearing aids.

Method: Al literature review was conducted using EBSCOhost and included the databases CINAHL, MEDLINE, and PsycNPiO. After applying prior agreed inclusion and exclusion critical 13 reactives uses included the median

CINCHI, MEDLINE, and PSycINEO. After applying prior agreed incussion and exclusion criteria, 13 reports were included in the review.

Results: Included studies fell into three domains: 1) electroacoustic characteristics, 2) consumer surveys, and 3) outcome evaluations. Electroacoustic characteristics of these devices vary significantly with some meeting the stringent acoustic criteria used for hearing aids, while others producing dangerous output levels (ie, over 120-dB sound pressure level). Low-end (or low-cost) devices were typically poor in acoustic quality and did not meet gain levels necessary for most adult and elderly hearing loss patterns (eg, presbycusis), especially in high frequencies. Despite direct-mail hearing aids and PSAPs being associated with lower satisfaction when compared unter-main training axis ain 1947's feeing associated with otwest stansaction where computer to the barring aids purchased through hearing health care professionals, consumer surveys suggest that 5%-19% of people with hearing loss purchase hearing aids through direct-mail or online. Studies on outcome evaluation suggest positive outcomes of OTC devices in the defect population. Of note, OTC outcomes appear better when a hearing health care professional supports



### Thank you all..... ©



