• If you are viewing this course as a recorded course after the live webinar, you can use the scroll bar at the bottom of the player window to pause and navigate the course.

• This handout is for reference only. Non-essential images have been removed for your convenience. Any links included in the handout are current at the time of the live webinar, but are subject to change and may not be current at a later date.

© 2018 continued® No part of the materials available through the continued.com site may be copied, photocopied, reproduced, translated or reduced to any electronic medium or machine-readable form, in whole or in part, without prior written consent of continued.com, LLC. Any other reproduction in any form without such written permission is prohibited. All materials contained on this site are protected by United States copyright law and may not be reproduced, distributed, transmitted, displayed, published or broadcast without the prior written permission of continued.com, LLC. Users must not access or use for any commercial purposes any part of the site or any services or materials available through the site.
Frequency Discrimination in Children with APD or SLI

Christine Rota-Donahue, PhD
Lehman College of the CUNY
AudiologyOnline - July 2018

Disclosure

- Employed by the City University of New York.
- Author of several articles and presentations on auditory perception.
Learning objectives

- Describe Δf thresholds in children.
- Compare and contrast the effect of APD or SLI on frequency discrimination ability.
- Understand the importance of supra threshold Δf detection.

Outline

- Introduction
- Review of clinical profiles of APD and SLI
- Overview of auditory brain
- Δf detection in - typically developing children
 - children with APD or SLI
- Suprathreshold frequency discrimination
- Clinical implications
- Summary, Q & A
Introduction

- Why is frequency discrimination important?

- Language learning (e.g., Noonan et al., 2008)

- Speech perception (e.g., Tallal & Percy, 1973; Benasich & Tallal, 2002; Kuhl, 2004).

Spectral Cues

- Formants identification (Bailey & Snowling, 2002)

- Frequency cues are important (Kleindienst & Musiek, 2011)
Clinical Profiles

- **Specific Language Impairment** is characterized by a difficulty in acquiring language, in the absence of known neurological disorder, or a cognitive, emotional, or sensory deficit (Leonard, 2014).

- **Pediatric Auditory Processing Disorder** includes difficulty in one or more of the following (ASHA, 2005; AAA, 2010):
 - Sound localization
 - Auditory discrimination and auditory pattern recognition
 - Dichotic listening
 - Auditory performance in noise

Why is testing for APD important?

- The prevalence of pediatric APD is about 3% of school-aged children (Musiek & Chermak, 2014).

- APD is often associated with language impairment (e.g. Rota-Donahue, 2014), BUT, not always assessed in atypically developing children (e.g., Bishop, 2007).
Brain Bases of Auditory Perception

- Maturation of the auditory pathways.
- Individual brain characteristics.

Maturation

Image by Bockel, Openclipart
Decussation of the Auditory Pathways

Posterior Superior Temporal Gyrus (pSTG)
Detection in Typically Developing Children Behavioral Measures

- Δf threshold in typically developing (TD) children (Rota-Donahue, 2010).
- Using two continuous tones – base frequencies of 500 Hz and 3000 Hz – with no change and with a change.
- Examples:
 - 500 Hz – no change
 - 500 Hz to 520 Hz
 - 3000 Hz – no change
 - 3000 Hz to 3120 Hz

Behavioral Δf thresholds in TD children

- Δf thresholds in the order of 1% of the base frequency at 500 Hz and 3000 Hz (Rota-Donahue, 2010).
- In the order of 1% of the base frequency at 1000 Hz for “good performers” (Moore et al., 2008).
- Other studies with mixed results and great variability (e.g., Sutcliffe and Bishop, 2005).
Δf detection in TD children
Electrophysiology A Review

What is electroencephalography (EEG)?

- Recording of electrical activity at the level of the scalp.
- Using caps with electrodes.
- Spontaneous EEG vs. responses time locked to an event.
P1-N1-P2 component

From: Creative Commons

T-complex
Mismatch Negativity MMN

- Large Δf (40% of the base frequency): expected response clearly visible.

- Δf threshold, around 1% of the base frequency.

Rota-Donahue, 2010
T-Complex

Δf detection in TD children
Electrophysiology

- Δf thresholds in the order of 1% of the base frequency at 500 Hz and 3000 Hz (Rota-Donahue, 2010).

- In the order of 2% of the base frequency at 1000 Hz for some participants (Ahmmed et al., 2008).

- Other studies with mixed results and great variability (e.g., McArthur and Bishop, 2005).
Δf detection in children with APD or SLI

Background

Some atypically developing children show auditory deficits:

- **Behaviorally**
 - Poor frequency processing linked to language impairment (e.g., Noonan et al., 2007).
 - Elevated Δf thresholds in some children (e.g., Moore et al., 2008).
- **Electrophysiologically**
 - Obligatory P1,N1, P2 immature (e.g., Bishop, 2007)
 - Reduced MMN (e.g., Bishop, 2007).

More recent research studies on Δf

Non typical children show frequency perception deficits:

- **Behaviorally**
 - Δf thresholds around 10 % of the base frequency (Moore et al., 2008).
 - Compounding negative effect if children have both APD and SLI, (Rota-Donahue et al., 2016).
- **Electrophysiologically**
 - Obligatory P1,N1, P2, no significant waveform differences at FCZ but differences at T7 and T8 (Rota-Donahue et al., 2014).
 - Weak MMN and elevated Δf thresholds in some children, (Ahmmed et al., 2008)
 - Reduced MMN amplitude in children with both APD and SLI (Rota-Donahue et al., 2014).
Δf detection in non TD children
Behavioral Measures

- Examples (Rota-Donahue et al., 2014)

- Method:
 - Population: 10-12 year-old children screened for hearing, attention and neurological deficits; tested for non verbal intelligence, language and auditory processing.
 - Procedure: two alternative forced-choice procedure.
 - Stimuli: four pure tones (see next slide).

Stimuli
Analysis of behavioral data
Sensitivity Index – d’

Why d’?

- Sensitivity Index, (Green and Swets, 1974).
- Hit rate (H) and false alarm rate (F) calculated for each participant for both tasks.
- d’ determined for each participants using the formula:
 \[d' = z(H) - z(F) \]

<table>
<thead>
<tr>
<th>Δf</th>
<th>TD</th>
<th>APD</th>
<th>SLI</th>
<th>BOTH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M SD SE</td>
<td>M SD SE</td>
<td>M SD SE</td>
<td>M SD SE</td>
</tr>
<tr>
<td>Small</td>
<td>1.94 1 (.28)</td>
<td>1.24 1.07 (.54)</td>
<td>0.89 1.17 (.58)</td>
<td>0.9 0.95 (.28)</td>
</tr>
<tr>
<td>Medium</td>
<td>3.1 1.03 (.29)</td>
<td>2.05 1.43 (.72)</td>
<td>1.96 .68 (.34)</td>
<td>1.6 1.08 (.36)</td>
</tr>
<tr>
<td>Large</td>
<td>3.85 79 (.22)</td>
<td>3.28 1.25 (.63)</td>
<td>2.63 .84 (.42)</td>
<td>2.17 1.25 (.42)</td>
</tr>
</tbody>
</table>

Rota-Donahue et al., JAAA, 2016.
Δƒ detection in children with APD or SLI
Electrophysiology

- Examples (Rota-Donahue, 2010)

- Method:
 - Population: 8-11 year-old children screened for hearing, attention and neurological deficits; tested for non verbal intelligence, language and auditory processing.
 - Procedure: EEG recording time locked to the frequency change, P1-N1-P2 measures.
 - Stimuli: continuous tones.
Comparison Δf thresholds Non TD vs. TD

P1-N1-P2 in children with APD or SLI

Rota-Donahue, 2014
T complex at T7 and T8 for the four groups of participants.

T-Complex

Average amplitude in µVolts of Tα at T7 and T8 sites
Suprathreshold frequency discrimination

- Related to everyday perception.
- Rarely reported, as Δf thresholds studies prevail.
- Clinical profiles affect frequency discrimination differently, (Rota-Donahue et al., 2016).
Brain Basis of APD and SLI

Atrophy in the periSylvian fissure reported by Boscariol et al., 2011
Clinical Case – Jane, 10 year-old girl

- Questionnaire: neurological deficits ruled out, unremarkable medical history.
- Hearing screening: pass bilaterally between 500Hz and 4000Hz.
- Checklist to rule out AD(H)D based on the Connors’ checklist: pass.
- Test of non-verbal intelligence. TONI score of 96.
- CELF Core Language Standard Score of 55.
- Referred for APD evaluation due to lack of progress in speech language therapy.

Tests of Auditory Processing:

- LiSN-S: below norms
- DDT: 54%, AD, 44% AS
- GIN: 20ms AU
- SCAN3-C – A/F ground subtest scaled score: 8

Overall:
- Client has both APD and SLI
Differential Processing Training Program
by Kerry Winget (LinguiSystem)

Book 1 Acoustic Tasks
- Dichotic Listening
- Temporal Patterning
- Auditory Discrimination

Book 2 Acoustic-Linguistic Tasks
- Phonemic Manipulation
- Phonic Manipulation

Book 3 Linguistic Tasks
- Word Relationships
- Prosodic Interpretation
- Language Organization

After 2 months of Auditory Training

SOAP notes from the SLP:
- Jane is more attentive during sessions.
- The mother is more motivated.
- Jane is able to follow 3 steps commands (> 80% after 2 months of auditory training), compare to 1 step commands before training.
- However, Jane’s language comprehension and her reading skills are still very poor.
- CTOPP, phonological memory (memory for digits and non word repetition), score: 88.
- Future goals include working on word relationships and semantics.
Overall - Δf in children

Typically developing children:
- Behavioral Δf thresholds similar to adults’, in the order of 1% of the base frequency.
- Electrophysiologically, Δf thresholds also in the order of 1% of the base frequency.

Clinical groups:
- Elevated behavioral Δf thresholds.
- Reduced EEG response at T7 and T8.
- Reduced MMN amplitude.
- Compounding effect of having 2 disorders vs. one.
- Suprathreshold Δf detection also affected.
- Importance of identifying APD to provide auditory training.

Conclusion

- APD and SLI
- Spectral processing and language learning
- Threshold and suprathreshold detection
- The assessment of Δf detection
- Remediation plans
References

Thank you

Questions?