

PRINCIPLES OF VNG ANALYSIS

Keeley Moore, MA, FAAA Board Certified Audiology

Housekeeping

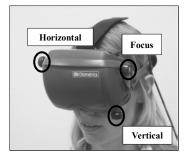
- IF you have problems connecting, please contact Audiology Online for assistance at 800-753-2160
- · Exam for CEU credit
 - Must be taken within 7 days if viewing live presentation
 - Must be taken within 30 days if viewing recorded presentation
- Course handout is available in the shared material section to the lower left
- · You can toggle to Full Screen if you need a bigger view

Principles of VNG analysis

- 1.Set up for success
- 2.Clean up responses
- 3.Assess each result
- 4.Check your work

1. Set up for success

- Goggle placement
 - Optimal data collection depends on optimal camera positioning!
- · Video adjust
- Calibration
 - Range



Goggle placement

- 1. Click on Video Adjust
 - · View eyes while placing the camera
- 2. Loosen the back and top headbands on the goggles
- 3. Place the goggles on the bridge of the patient's nose and pull the back headband over the patient's head
- 4. Position the goggles so that pupils are center and level
- 5. Tighten the headbands
 - Goggles should be snug; patient may have "raccoon eyes" afterwards
- 6. Fine-tune the positioning with the knobs (H,F,V)

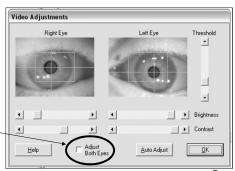
Goggle placement

Horizontal knob: adjusts the distance between the cameras

Focus knob: adjusts the distance between the cameras and the patient's pupils

Vertical knob: adjusts the camera up and down

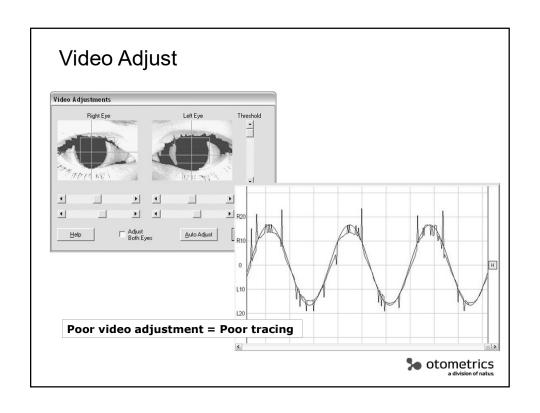
*Most commonly used


Goggle placement tips

- · Position the back headband as low as it can go
 - · Below the inion if possible
 - The two straps of the back headband may be positioned so that one is above inion and other is below
- · Make sure the top headband is straight
 - · Generally need to leave this with as much length as possible
 - The top headband can assist with raising and lowering the goggles on the patient's face

Video Adjust

- · Auto-adjust is a good place to start
- · Manual adjust should be used for optimizing the image
 - Brightness and Contrast can be done individually or for both eyes together; Threshold affects both eyes


Adjust Both Eyes is for manual adjustment of Brightness and Contrast

.

otometrics

a division of natus.

Video Adjust

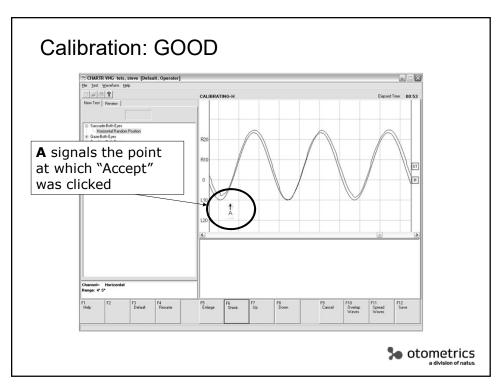
- Watch the crosshairs as patient moves eyes side to side, up and down
 - · Make sure crosshairs stay with pupils at extreme positions

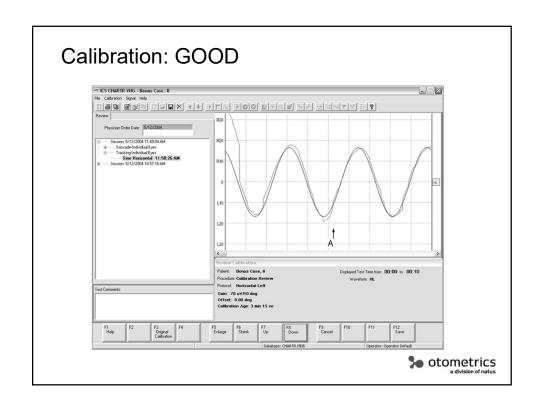
Video Adjust tips

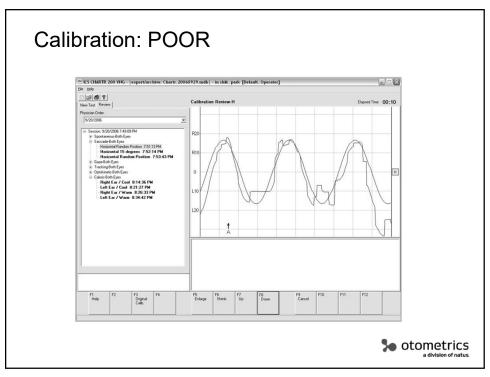
- · Dimly lit room is best for software to differentiate between pupil and iris
 - · Light will affect software's ability to auto-adjust
 - If there is a lot of light in the room, do the auto and manual adjust with the goggle cover closed
- · Adjustment settings are kept between patients
 - · Auto-adjust not necessary for each patient
 - · Manually tweak to optimize
- · Consider obtaining:
 - · Make-up remover
 - · White eye-liner pencil
 - · Eyelash curler

Calibration

- Calibration adjusts the recording system so that deflections correspond to amplitude of eye movements
 - The position of the patient in relation to the light bar affects the amount of eye movement required to follow the calibration stimulus
- · The required distance is 4 feet
 - Software assumes this distance during calibration
 - Sets outermost light at 30 degrees right/left (used for Gaze)
- Acceptable range 3'8" to 4'4"
 - · Range function on light bar monitors distance during testing




Calibration

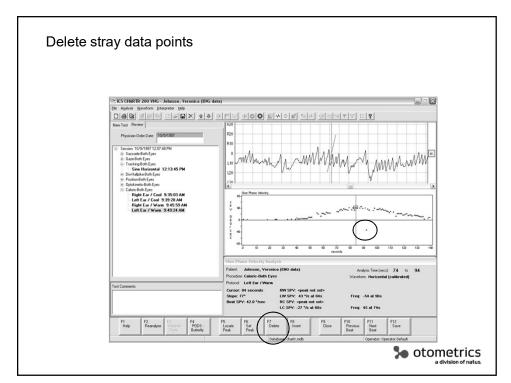

- · Can be done with tracking or saccadic stimulus
 - ICS Chartr 200 uses tracking stimulus (+/- 10 degrees)
- · Instruct the patient to follow the target and only move his/her eyes
- · Start the calibration and wait for the target and tracing to match up
- When at least one good cycle has recorded, click on "Accept" and the calibration will be immediately applied
- Record 2 more cycles to verify calibration

Calibration tips

- · Calibrate once for VNG
 - · Recheck/redo calibration if goggles are removed and replaced
 - · Be aware of goggle position while moving the patient
- · Avoid using the default horizontal calibration
 - · No one is average
- Speed doesn't matter, so it's okay to slow down the stimulus if software allows it
 - Chartr 200 defaults to 30 deg/sec
 - · Option to slow to 20 deg/sec

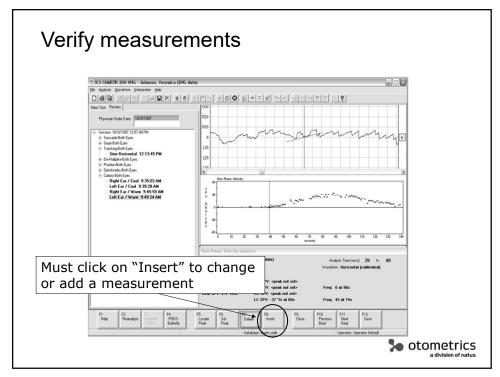
2. Clean up responses

- · Understand what you're measuring
- · Delete stray data points
- · Verify measurements
- · Identify the peak of the response



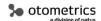
Understand what you're measuring

- Looking for nystagmus presence, absence, status change
- · Intensity of nystagmus
 - · Determined by the slow phase
 - What is the Slow Phase Velocity (SPV)?
- · Direction of nystagmus
 - · Determined by the fast phase
 - Is it horizontal, vertical, or torsional?
- · Latency and duration of nystagmus
 - · When does it start and how long does it last?

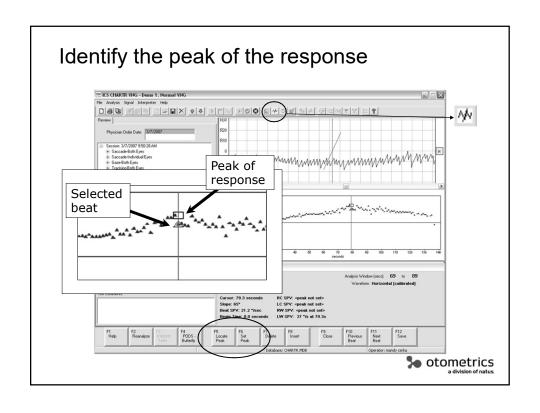


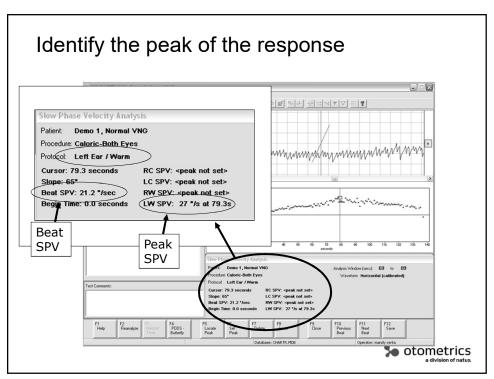
Verify measurements

- Spot-check computer's measurement of nystagmus at logical points throughout the response
 - Scroll through measured beats
 - · Click on waveform in desired spot to measure any beat
- Press "Ctrl" and R/L arrow keys to adjust amplitude of measured beat or measure new beat
- · Click on "Insert" to make measurement permanent
 - · For changing measurement AND for adding a new beat


Verify measurements

- Assign primary
 - Allows operator to select which test will print with report or which caloric irrigation will be included in the Pods/Butterfly
 - **Example**: The operator tested RW twice because the first response was smaller than expected
- · Rename tests
 - Allows operator to change the test name when data were collected in the wrong place
 - Example: The patient was positioned as body left but the operator accidentally recorded it in body right



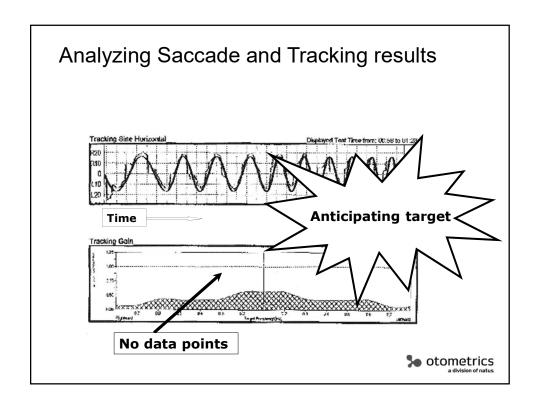

Identify the peak of the response

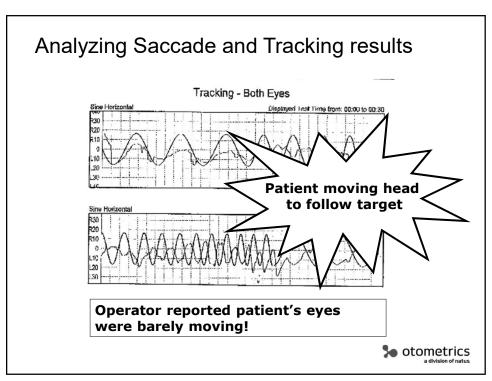
- · Locate Peak: computer picks the peak of the response
- · Set Peak: operator picks the peak of the response
 - · Click on a beat at the peak of the response
 - · Click on "Set Peak"
- · The peak of the response is an average of beats
 - Software defaults to averaging 3 beats, but can be adjusted up to averaging 10 beats for each peak
 - The average is taken from the (3) largest beats in the 10-second window around the chosen beat

Presented in Partnership with

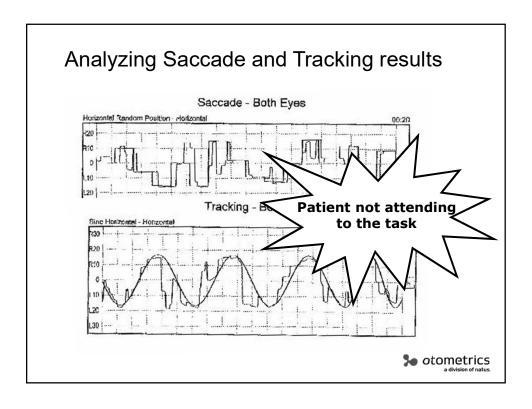
3. Assess each response

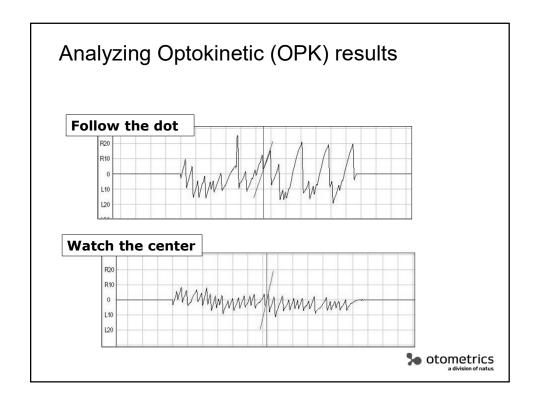
- · Analyzing Saccade and Tracking results
- Analyzing Optokinetic (OPK) results
- · Analyzing Gaze and Positional results
- · Analyzing Caloric results




Analyzing Saccade and Tracking results

- · Delete stray data points
- Need enough raw data points accepted to have at least 3 averaged points for movements in each direction (leftward and rightward movements)
- · Normative data depends on the age of the patient
 - · Ages 10 and older
 - · Normative data from ENG testing
- Data points will be rejected if the patient response is too far off of the target
 - · Not paying attention
 - · Anticipating the target



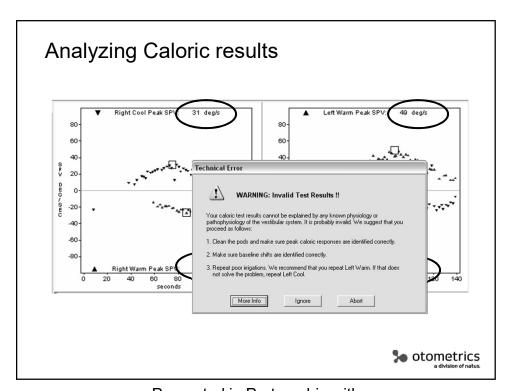


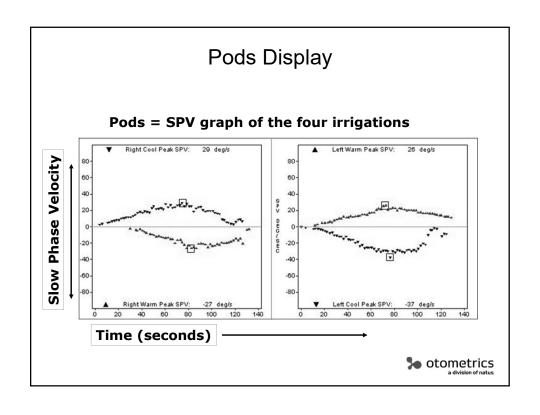
Analyzing Optokinetic (OPK) results

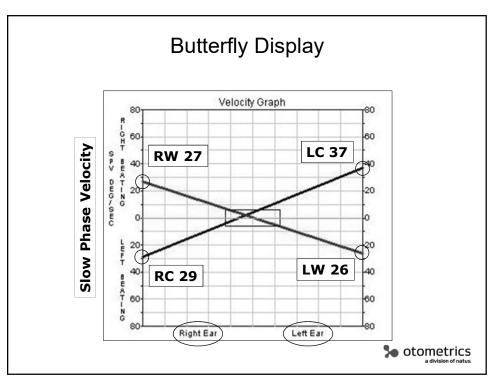
- The appearance of the nystagmus will vary according to directions given
 - · Watch each dot as it goes through the center
 - · Follow the dot from one side of the light bar to the other
- · The patient should perform equally in each direction
 - Nystagmus SPV should be greater than 75% of the target velocity for each direction
 - For stimulus at 40 deg/sec, patient should perform at 30 deg/sec or better in each direction
- · Analyze the patient's best performance

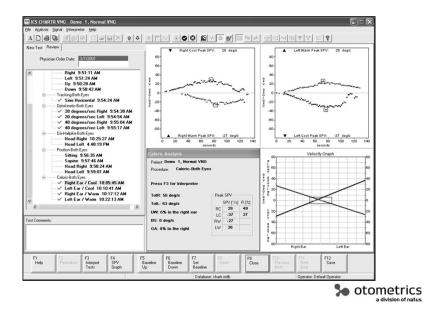
Analyzing Gaze and Positional results

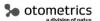
- Scroll to where analysis should begin, then click **Begin**
 - · Allows analysis for 140 seconds after the "Begin" point
- · Delete beats that are likely artifact
 - · Disorders result in consistent abnormalities
 - · Artifacts are common if patient is not attending to the task
- · Measure and insert data points
- · "Locate" or "Set" peak




Analyzing Caloric results


- · Scroll to where analysis should begin, then click Begin
 - Allows analysis for 140 seconds after the "begin" point
- · Delete stray data points
 - · Normal caloric response will grow and subside gradually
 - · Onset of fixation light can cause eyes to jump
- · Measure and insert data points
- "Locate" or "Set" peak




Bithermal Caloric Test: Normal Result

Analyzing Caloric results

	Warm	Cool	Difference
Right	27	31	4
Left	49	28	21

- The warm/cool results for each ear should be similar
- If Left Cool were 49, then there would be a UW of 26%
- · If Left Warm were 28, then the results would be WNL
- · The computer will not make this decision for you

4. Check your work

- · Cross-check key elements
 - · Patient information
 - · Tracking and OPK
 - · Gaze and Positionals
 - · Positionals and Calorics
- Interpretation Assistant™
 - Positionals
 - · Calorics

Use patient information to check results

- · Compare results with patient's description of problem
 - · Does the problem occur upon standing up quickly?
 - Does the problem occur upon rolling over in bed?
 - · Is the problem described as a general imbalance?
- · Compare results with patient's subjective responses
 - Does the patient report feeling dizzy during any particular test?
- · Compare results with patient's health history
 - · Is the patient taking seizure medications? Anti-depressants?
 - · Has the patient suffered a head trauma in the past?
 - · Is the patient an alcoholic?

Check Optokinetic (OPK) results with Tracking results

- · OPK tested on a light bar tests visual pursuit system
 - · Results (normal/abnormal) should be consistent with tracking findings
- · If OPK results don't match tracking results...
 - Did the patient have trouble understanding the directions?
 - · Did the patient have trouble attending to the task?
 - Can the patient do the task at a slower rate?
- If the patient can do the OPK task long enough to get 5-6 beats in a row, you can stop the test
 - · There's no need to run it for a long period

Check Gaze results with Positional results

- · If Gaze testing reveals some nystagmus with vision, try testing without vision
 - · Does the nystagmus get larger when vision is denied?
 - Does the nystagmus stay the same or get smaller when vision is denied?
- · You should see the same nystagmus in the positional testing with vision
 - If you don't see it initially in the positionals with vision, ask the patient to look at a particular point
 - Intentional gaze in Gaze and Positional testing should match

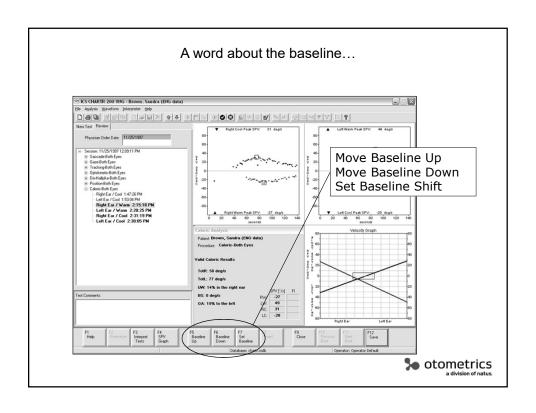
Check Positional results with Caloric results

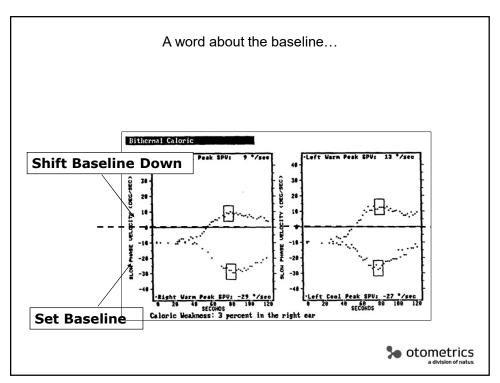
- · Spontaneous nystagmus
 - Nystagmus that beats in the same direction with same amplitude in all positions
 - · This bias creates a directional preponderance in the caloric testing
 - · Baseline shift to account for it
 - · Any bias left after shifting baseline is true Gain Asymmetry
- · Positional nystagmus
 - Nystagmus that changes in direction or amplitude with different positions
 - · This is not likely to create a significant trend in the caloric testing
 - · No need to baseline shift

A word about the baseline...

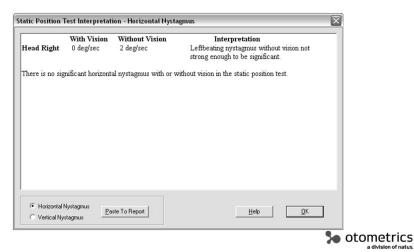
- A guideline or starting point for comparison
- · We assume the starting point for caloric responses is from 0 deg/sec

HOWEVER...

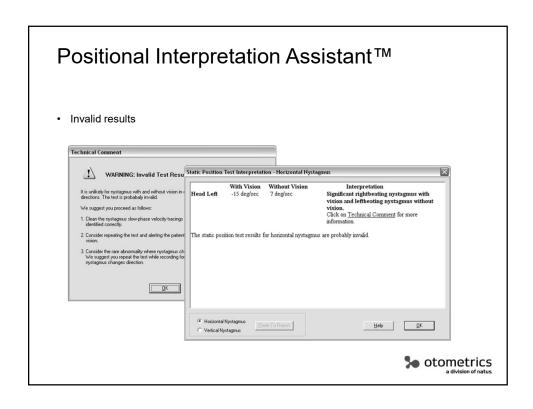

 If the patient has spontaneous nystagmus, the starting point has shifted in the direction and at the amplitude of the spontaneous nystagmus


SO,

· We have to shift the baseline to account for the patient's actual starting point

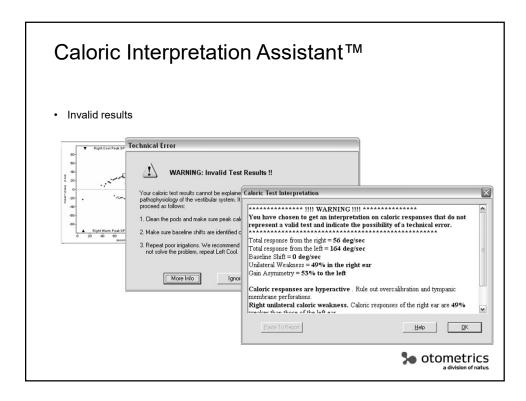

Interpretation Assistant™

- Interpretation Assistant™ will validate and analyze the results of the testing
 - · Available for positional and caloric testing
- · Option found in the Review mode after analyzing
 - Analyze the data of each position with vision and without vision, collected separately
 - · Collect responses for all four caloric irrigations and analyze the data
- The output of the validation and analysis is displayed to the clinician and can be pasted into the VNG/ENG report




Positional Interpretation Assistant™

Valid results



Data Analysis Tips

- · Normative data available for ages 10 and older
 - Saccades (age)
 - Tracking (age and gender)
- "Abnormal" areas represented by hash marks
- Analyze vertical channel if needed for upbeat/downbeat nystagmus
 - Click on the vertical waveform handle ("V"), then click Analyze
- Delete artifacts
- Press "Ctrl" and R/L arrow keys to adjust amplitude of measured beat or measure new beat
 - Click on "Insert" to make measurement permanent
 - For changing measurement AND for adding a new beat

Thank you! Questions? Keeley.Moore@natus.com **otometrics** advision of natus.

