If you are viewing this course as a recorded course after the live webinar, you can use the scroll bar at the bottom of the player window to pause and navigate the course.

This handout is for reference only. Non-essential images have been removed for your convenience. Any links included in the handout are current at the time of the live webinar, but are subject to change and may not be current at a later date.
Technical issues with the Recording?

- Clear browser cache using these instructions
- Switch to another browser
- Use a hardwired Internet connection
- Restart your computer/device

Still having issues?

- Call 800-753-2160 (M-F, 8 AM-8 PM ET)
- Email customerservice@AudiologyOnline.com
Fundamental Mechanisms of Ototoxicity

Brian Zitelli, PharmD

Disclosure

- Brian Zitelli has the following financial disclosures:
 - He is employed by UPMC Hillman Cancer Center
 - He is receiving an honorarium for this session

- Brian Zitelli has no non-financial disclosures
Learning Outcomes

The Learner will be able to:

- Describe key pharmacological concepts including: therapeutic index, receptor, and pharmacokinetics
- List the most common mechanisms of ototoxicity
- Explain the proposed mechanisms of otoprotective drugs and supplements

Topics for today

- Section 1: Pharmacology
- Section 2: Mechanisms of Ototoxicity
- Section 3: Chemical Otoprotection
Section 1: Pharmacology

Introduction to Pharmacology

Broadly, the study of medicines, including:

- Origin
- Chemistry
- Therapeutic use
- Mechanisms of action
- Pharmacokinetics/Pharmacodynamics
- Toxicology
Receptor Theory

- Drugs interact with biological molecules (receptors) to change the state of the molecule, producing a physiologic response
- Competition for active binding sites can result in different outcomes
 - Agonist - a drug binds to a receptor, leading to activation of a cellular process
 - Antagonist - a drug binds to a receptor, preventing the activation of a cellular process
 - Partial agonist - a drug binds to a receptor, but produces an effect below the theoretical maximum response

Receptor Theory - Consequences

- Drugs modify existing cellular processes
 - Traditional drug therapy (as opposed to gene therapy) does not fundamentally change cells
- Some receptor types are present in multiple tissues
 - This is at the root of many drug toxicities
- Manipulating receptors specific to a particular cell type is key to effective drug therapy
 - Penicillin interferes with bacterial cell walls
 - Many chemotherapy agents target dividing DNA, present in more cancer cells than normal cells
 - Some blood pressure medicines relax the smooth muscle in arteries, but do not interfere with voluntary muscle control
Selectivity

- Receptors for endogenous substances or drugs may exist in multiple tissues
- Multiple receptor types may respond to the same signal

 - Example: Alpha and Beta receptors
 - Receptor subtypes may exist that respond to differing degrees

 - Example: Beta 1 receptors in the heart, Beta 2 receptors in the lungs
 - Drugs may exhibit differing affinities for related receptors
 - A lack of selectivity is often manifested as toxicity

 - Example: Rapid heartbeat from albuterol

Pharmacokinetics (Absorption)

- Initial uptake of drug, regardless of route
Pharmacokinetics (Distribution)
- Dispersal of a drug throughout the body from the initial site of absorption

Pharmacokinetics (Metabolism)
- The actions of the body on a drug, most commonly by the liver
Pharmacokinetics (Elimination)

- Removal of the drug or metabolites, usually by the renal or hepatic pathways
Pharmacokinetic Profiles

Steady State

\[AUC_t = \int_{0}^{t} C dt \]

\[AUC_\infty = \int_{0}^{\infty} C dt \]
Pharmacodynamics

- The study of the relationship between drug concentrations and effects
 - The relationship is not always linear

- Includes the study of tolerance
 - Decreased efficacy with repeated usage of a drug
 - Ex. opioid painkillers

- The relationship between the probability of the desired outcome and toxicity is called **therapeutic index**

Toxicity - Adverse Drug Events

- An appreciably harmful or unpleasant reaction, resulting from an intervention related to the use of a medicinal product, which predicts hazard from future administration and warrants prevention or specific treatment, or alteration of the dosage regimen, or withdrawal of the product

Notes:

- All FDA approved drugs must publish the incidence of ADEs observed during their trial periods
- All drugs are subject to post-marketing surveillance, which is intended to identify ADEs not observed during the trial period

Expected:
- A potential consequence of drug therapy based on what is known about a given drug’s action

Unexpected:
- In some cases, patients may experience ADEs that are not listed in the available literature

Note:
- These can be reported to FDA MedWatch, which may lead to further investigation
Therapeutic drug monitoring

- Pharmacokinetics can be used to predict drug levels based on specific patient characteristics
- Therapies that may benefit from monitoring levels have:
 - A strong relationship between effect and plasma levels
 - Significant kinetic variability from patient to patient
 - An established concentration range
 - An affordable assay test to measure drug levels

Therapeutic Index

![Graph showing the relationship between % Patients and Plasma Drug Concentration](image-url)
Therapeutic Index - Wide vs Narrow

End of Section 1

Questions?
Section 2: Mechanisms of Ototoxicity

Hearing Anatomy

- Auricle
- External Auditory Canal
- Tympanic Membrane
- Tympanic Cavity
- Round Window
- Eustachian Tube
- Stapes (attached to oval window)
- Maleus
- Incus
- Vestibular Nerve
- Semicircular Canals
- Cochlear Nerve
- Cochlea
Cochlear Anatomy

Common Mechanisms of Ototoxicity

Free Radical Damage
- Direct molecular damage to cells

Ion Gradient Disruption
- Between endolymph/perilymph

Metabolic Stress
- Decreased blood flow in the stria vascularis
Chemistry Review

- Atomic structure
 - Nucleus - protons and neutrons
 - Electrons - orbit the nucleus in predictable patterns called orbitals

- The “S” orbitals hold up to 2 electrons

Chemistry Review

- After the S orbital is filled, electrons are stored in “P” orbitals

There are 3 P orbitals - one for each axis of a graph (X,Y,Z)

The P orbitals can hold 6 electrons total (2 in each), S and P together hold 8

The highest occupied orbital is known as the valence shell

An unpaired electron is unstable
Free Radical

A missing electron creates a "Free Radical", highly reactive

Elemental Oxygen (O2) exists in nature as a pair of atoms sharing electrons. Energy is released by breaking the bond between these atoms.

If an electron becomes unpaired during a reaction, the resulting radical will react with nearby molecules to obtain one.
Free Radical Chain Reaction

initiation

\[
\text{A}^* + \text{B} \quad \text{(heat or light)}
\]

propagation

\[
\text{A} - \text{C} = \text{D} \quad \rightarrow \quad \text{A} - \text{C} + \cdot \text{D}
\]

\[
\text{D}^* + \text{E} - \text{F} \quad \rightarrow \quad \text{D} - \text{E} + \cdot \text{F} \quad \rightarrow \quad \text{etc.}
\]

termination

\[
\text{F}^* + \cdot \text{G} \quad \rightarrow \quad \text{F} - \text{G}
\]

Free Radicals

- In biological contexts, free radicals usually take the form of reactive oxygen species (ROS)
 - There are multiple subtypes of ROS, but all contain an oxygen atom with an unpaired electron
 - These ROS participate in chain reactions
 - Proteins, DNA, lipid membranes and other important cellular molecules are damaged
 - Chain reactions can be mitigated by molecules that are able to donate an electron without becoming unstable (Antioxidants)
 - Accumulated damage may result in cell apoptosis or necrosis
Drugs/Processes associated with ROS

- **Normal respiration and metabolism**
 - Some free radical generation is a normal consequence of our biology

- **Aminoglycosides**
 - Gentamicin, etc.

- **Radiation used for cancer treatment**
 - High energy waves split molecules

- **Many chemotherapy agents**
 - Cisplatin, etc.
 - It is important to note that in the case of cancer treatment, this type of oxidative damage is a necessary component of anti-tumor activity
Free Radical Damage

- Can result in damage to either the cochlea or the vestibular system
 - Cochlea – kills hair cells
 - Vestibular system – kills nerve cells of the vestibular ganglion

Connecting Concepts

Scenario: A young man is being treated with a CISplatin containing regimen for testicular cancer. Reducing the dose is not advised, as his treatment is likely to be curative, and efficacy may be compromised.

- Toxicity (ototoxicity and others) is expected. This is because CISplatin has a narrow therapeutic index.
- After administration, CISplatin is distributed throughout the body, not just to the tumor. It now comes into contact with the cells of the inner ear.
- As a consequence of its mechanism, CISplatin begins to generate ROS in the ear, ultimately leading to the death of hair cells.
Disruption of Necessary Gradients

- Maintenance of proper ion gradients between endolymph and perilymph is critical to proper function of the cochlea
 - This gradient is actively maintained by ion pumps in the membranes that separate the different scala
 - Ion pumps are proteins that may function as drug receptors
 - In the presence of certain drugs, these pumps may not function as intended. The result is impaired hair cell function.
 - Once the offending drug is eliminated, the gradient can be restored, and hair cell function usually returns with it

Drugs linked to gradient disruption

- Loop diuretics
 - Furosemide, etc.
 - Loop diuretics interfere with strial adenylate cyclase and Na+/K+-ATPase and inhibit the Na-K-2Cl cotransporter in the stria vascularis (Ding et al)
 - Disrupts the gradient directly at the pump level
 - Disrupts indirectly by depriving the enzymes of the energy needed to function properly
 - Loop diuretics also cause potassium wasting
Metabolic Stress

- The stria vascularis supplies critical blood flow to the cochlea
 - Supplies needed nutrients
 - Removes waste
- Vasoconstriction is a common condition that leads to decreased blood flow in the stria vascularis

Drugs associated with metabolic stress

Non-steroidal anti-inflammatory drugs (NSAIDS)
- Aspirin, Ibuprofen, etc.
 - Vasoconstriction is believed to be a major contributor to NSAID ototoxicity
 - Usually the result of repeated dosing
 - Characterized by tinnitus and reversible hearing loss

Loop diuretics
- In addition to interfering with gradients
 - Secondary effect; decreased blood volume can induce constriction
End of Section 2

Questions?

Section 3:
Chemical Otoprotection
Potential Mechanisms for Otoprotection

- Reduction of free radicals
- Alleviating biological stress

Antioxidants

- Antioxidants are molecules that are able to donate an electron to another molecule, without becoming unstable
- The human body produces some molecules with antioxidant properties naturally
- Antioxidants may also come from the diet or be taken as a supplement
Antioxidants Being Studied (a few of many)

- **D-methionine**
 - An amino acid that can be reversibly oxidized, neutralizing ROS

- **N-acetylcysteine**
 - Precursor of glutathione, an endogenous antioxidant

- **Molecular Hydrogen**
 - Direct electron donor

Limitations of antioxidants as therapy

- **Efficacy depends on adequate concentration in susceptible tissues**
 - Intravenous/Oral administration may fail to deliver adequate concentrations in the ear
 - May require injection directly into the ear
 - High dose systemic therapy may interfere with treatments that depend on ROS generation for efficacy
 - Chemotherapy/radiation
 - Pharmaceutical companies possibly reluctant to take on the cost of bringing drugs to market
 - None commercially available with the indication of otoprotection
Anti-inflammatory agents

Inflammation is a stressful biological state
- Swelling/Edema
 - Increased metabolic activity
 - Proliferation of signalling that may lead to cell death

Drugs already exist that may be useful
- Steroids - dexamethasone
- TNF blockers
- NSAIDS

Anti-inflammatory drugs

Dexamethasone
- Potent steroidal anti-inflammatory
 - Thought to reduce apoptosis by down-regulation of pro-apoptotic signalling from immune cells

Etanercept
- Binds to and neutralizes Tumor Necrosis Factor Alpha (TNF)
 - TNF is a pro-inflammatory marker
 - May lead to increased apoptosis

Salicylate
- Component of aspirin
 - May behave as an antioxidant
 - Reduces inflammation by inhibiting cyclooxygenase pathways
Limitations of Anti-Inflammatory Therapy

- These drugs are not free of toxicity!

Steroids
- Systemic therapy associated with:
 - Increased blood glucose, swelling, hormone disruption, immune suppression

TNF Blockers
- Immunosuppressive
 - Latent infections can be reactivated
 - Expensive

End of Section 3

Questions?
A Note About Supplements...

- Supplements are subject to a different regulatory process than drugs
 - Do not require FDA approval
 - “This statement has not been evaluated by the Food and Drug Administration. This product is not intended to diagnose, treat, cure, or prevent any disease.”
 - Unlike drugs, supplements are not required to prove efficacy or safety
 - Permissible claims are limited to:
 - Nutritional claims
 - Claims of well being
 - Health claims (evaluated by FDA)
 - Structure or Function claims
 - “Supports a healthy immune system”

Supplements (Additional Reading)

An in depth look at supplements for tinnitus:

Robert M. DiSogra, Au.D
Guide to OTC Tinnitus Relief Products
(https://docplayer.net/46917450-Guide-to-over-the-counter-tinnitus-relief-products.html)
Thank You

- Questions?
 - Contact me at: zitellib@upmc.edu