

Learning Outcomes

- After this course learners will be able to define the candidacy considerations for bone conduction hearing devices in infants and young children.
- After this course learners will be able to list the types of bone conduction hearing devices available.
- After this course learners will be able to identify the key elements of a hearing aid fitting protocol.

Acknowledgements

- Marlene Bagatto, Associate Professor, Western University
- Pediatric Bone Conduction Working Group

Because sound matters

Guideline versus Protocol Pandy Glabbrigh glabbright g

Guideline

- Systematically developed statements to assist clinicians (in fitting hearing aids to the pediatric population)
- Summary and appraisal of the best available research evidence or expert consensus
- Does not provide information about the exact clinical processes that would fulfill the guideline

Because sound matters

Protocol

- Specifics about how to execute a guideline
- Tailored for use with specific equipment or test signals
- Details that allow a step-by-step operationalization to fulfill a guideline
 - Morris, 2003

Provision of Hearing Aids

- Suitable technology and evidence-based hearing aid fitting guidelines and protocols support accurate and safe hearing aid fittings for the pediatric population
 - · American Academy of Audiology, 2013
 - · Australian Protocol; King, 2010
 - British Columbia Early Hearing Program, 2006
 - Modernizing Children's Hearing Aid Services, 2005
 - Ontario Protocol; Bagatto, Scollie, Hyde & Seewald, 2010; Updated in 2014: www.dslio.com

Because sound matters

Options for Delivering Bone Conducted Sound

Direct Drive vs Skin Drive systems

- There are two types of bone conduction devices:
 - Direct Drive devices send vibrations via direct route to bone
 - **Skin Drive** devices send vibrations through the skin to bone
- Softband and magnet solutions provide similar performance¹

1) Briggs (2015) Clinical Performance of a New Magnetic Bone Conduction Hearing Implant System: Results from a Prospective, Multicenter, Clinical Investigation. Otol Neurotol. 2015 Jan 28. [Epub ahead of print]

Because sound matters

Surgical Eligibility

- Children must have sufficient skull thickness and bone quality before implantation of a magnet, abutment or active bone stimulator can be considered
 - At least 2.5 mm thick (Davids et al, 2007; Papsin et al, 1997; Tjellstrom et al, 2001)
 - · Currently the smallest implant available is 3 mm thick
- Currently, the placement of a bone anchored implant is recommended around age 5 years
 - Hakansson et al, 1990; Wade et al, 2002
 - · Surgical criteria varies from country to country

Non-Surgical Option Headband or Softband

- Delivers sound via vibrations across the skin to the skull. Device is snapped onto a soft headband for use; no surgery is required.
- Recommended for children with conductive or mixed hearing losses who do not have properly formed outer ear or ear canal to accommodate a BTE hearing aid.

Because sound matters

Infants with unilateral & bilateral aural atresia....

- Will be identified at birth through EHDI programs
- · Are candidates for bone conduction hearing devices on a softband
- Are not eligible for surgical device for several years

Introduction

- There are no well-established fitting protocols for children using bone conduction devices (BCD).
- Anecdotal evidence suggests that clinicians feel the fitting process for BCD to infants and young children is "uncertain".
- We developed a survey to understand current pediatric bone conduction fitting practices and challenges clinicians may face.

Because sound matters

What is a Skull Simulator?

Device used to measure the output of BCDs; similar to how a 2cc coupler is used to verify air conduction hearing aids.

How Do We Define a Successful BCD fitting in Children? Survey Comments

Themes

- Consistent use
- · Audibility of speech
- No feedback
- Comfortable
- Improved communication

· Aided audiogram within the normal range of hearing

How Do We Define a Successful BCD fitting in Children? Aided Audiogram - Challenges and Considerations

- How do we determine a good aided sound field audiogram? What is acceptable? What is exceptional? How does this vary with degree of hearing loss?
- What are appropriate age outcomes for aided audiograms? How do we expect them to change as they get older?
- What is the preferred method (i.e., azimuth) for assessing functional gain in the sound field?

Because sound matters

Survey Summary

- We have confirmed that due to the lack of evidence-based fitting protocols for BCD, the majority of clinicians are using their own fitting methods.
- The use of insitu measurements with children suggests there is a desire by clinicians to address individualization of fittings using objective measurements.
- Verification methods being used in BCD fittings reflect subjective strategies rather than objective (electroacoustic) measurements that are used in AC fittings.
- Only a small percentage of clinicians reported feeling confident about their fitting of the BCD device; those that felt comfortable, wanted to monitor the fitting closely.

Current Work: Retrospective File Review

Purpose: To gain further knowledge about the clinical fitting and management of infants and young children who wear BC devices

Collaborators: The Pediatric Bone Conduction Working Group

- Nemours (Baltimore)
 - Jessica Godovin
- Children's Hospital of Philadelphia
 - Joy Peterson, Laurie Mauro
- Cincinnati Children's Hospital
 - Annemarie Wollet, Michael Scott
- Institute for Reconstructive Sciences in Medicine, Alberta, Canada
 - Meredith Haluschak
- Saskatoon Health Region, Canada
- Saskat

- Charlotte Douglas, Lynne Brewster
- · University of Miami Children's Hearing Program
 - Kari Morgenstein
- Western University
 - Christine Brown, Marlene Bagatto
 - Lurie Children's Hospital (Chicago)
 - Katie Collela
 - Dalhousie University
 - Sheila Fortier and Michel Comeau

Because sound matters

Research Questions

- 1. What selection practices are pediatric audiologists demonstrating when providing bone conduction hearing systems (BCD) to their patients?
- 2. What fitting/verification practices are pediatric audiologists demonstrating when providing BCD to their patients?
- 3. What outcome evaluation practices are pediatric audiologists demonstrating when providing BCD to their patients?
- 4. What are the aided soundfield performance ranges for children fitted with BCD?

Method

- Review of patient files from large pediatric centers experienced in managing infants and young children who wear BCD
- Date range of file review: January 1, 2000 to January 31, 2016
- Inclusion criteria:
 - Birth to 6 years; 11 months
 - Unilateral conductive or mixed hearing loss with < 45 dB HL bone conduction pure tone average in affected ear
 - Bilateral conductive or mixed hearing loss with < 45 dB HL bone conduction pure tone average
 - Fitted with BCD (surgical or non-surgical)

Because sound matters

Method (continued)

- Exclusion criteria:
 - Children older than 6 years; 11 months
 - Single sided deafness (profound sensorineural hearing loss in one ear, normal hearing in the other)
 - Does not currently wear a bone anchored hearing system (BCD)
 - · Children with sensorineural hearing loss
 - Children with mixed hearing loss with > 45 dB HL bone conduction pure tone average

Data Collection

- · Each site reviewed clinical files of up to 15 children who currently wear BCD
- Provided the following anonymized information from each file for every visit within the study dates:
 - Gender, description of hearing loss, complex factor(s)
 - · Age at time of test/fitting/procedure
 - Type of BCD
 - Outcome Measures
 - Device usage (e.g., hours per day either reported or datalogged)
 - Aided testing (description of test and thresholds)

Because sound matters

Results: Demographic

- 65 files were reviewed
 - Average age = 41 months; Range = 2 to 83 months
 - 34 Female; 31 Male
 - 78% Atresia
 - 60% unilateral (38% right)
 - 28% bilateral
 - 50% Syndrome
 - 47% Complex Factors
- Average age at first fitting: 17 months
- Fitted using BC ABR thresholds: 75%
- BC device on soft headband: 94%

- Variety of makes & models
- Mostly on softband
- 1 modified BTE device

Results: Usage

- Reported from 38% of the files
 - Parental report & datalogging
- Ranged from 1 to 9.4 hours per day
 - Usage increased with age
- Low usage not necessarily due to complex factor

Because sound matters

Aided Soundfield Testing

- Survey data indicated that the most prevalent clinical tool for measuring the performance of BCD was aided soundfield testing
- Was being used for both Verification and Validation

Verification and BCD

- Verification involves ensuring the electroacoustic characteristics of the hearing aid support the auditory habilitation needs of the child
- For BCD, clinically feasible tools (e.g., targets, equipment, protocols) are in development
- · Clinicians are using aided soundfield testing as a method of verification for BCD
 - Age-related performance ranges (norms) are not available

Because sound matters

Results: Aided Testing

- Warble tones
- Ling 6
 - Monitored live voice or calibrated procedure (Glista et al, 2014)
- Speech in Quiet
- Speech in Noise
- Speaker azimuth varied
 - 0 or 90 degrees

Because sound matters

oticon

Results: Aided Testing

- Strategies used were clinic-dependent and/or clinician-dependent
- Collaborators indicated that aided testing was used for verification, validation, or both
- Not enough data to describe performance ranges (norms) yet
 - Goal for future work

Validation and BCD

- Validation is the process of assessing the impact of the hearing aid fitting to determine whether it is delivering the intended outcome
- Outcome measures are used in the validation stage to determine progress and treatment efficacy
- · Current outcome measurement tools could be applied
 - UWO PedAMP (Bagatto et al, 2011)
 - Ling 6 HL (Glista et al, 2014)

Because sound matters

Results: Validation

- Clinics are using a combination of subjective and objective outcome measurement tools
- · Tools used were clinic as well as age dependent

Because sound matters

Conclusions

- BCD on softbands are fitted to infants and young children
 - Unilateral atresia/microtia
- Due to the lack of necessary elements for verifying BCD, clinicians are applying their own strategies
 - · Variability across clinics and clinicians
- Some consistency in outcome measurement tools used for validation
 - LittlEARS, PEACH, Ling 6 (HL)

Conclusions

- · Variability in aided soundfield testing protocols
 - Verification vs Validation
 - Speaker azimuth
 - Stimuli
- Need to conduct targeted data collection to gather relevant performance ranges

Because sound matters

Important Updates

- DSL targets for Oticon Ponto BCD unilateral percutaneous fittings for adults (Hodgetts & Scollie, 2017)
- Skull simulators for clinical hearing aid test systems

Interacoustics Affinity

Audioscan Verifit

Future Directions

- Develop a draft protocol for providing BCD to infants and children
- Assess clinical feasibility and effectiveness of Pediatric BCD fitting protocol
- Align protocol with current and emerging BCD technological developments

Because sound matters

