- If you are viewing this course as a recorded course after the live webinar, you can use the scroll bar at the bottom of the player window to pause and navigate the course.
- This handout is for reference only. Nonessential images have been removed for your convenience. Any links included in the handout are current at the time of the live webinar, but are subject to change and may not be current at a later date.

continued

No part of the materials available through the continued.com site may be copied, photocopied, reproduced, translated or reduced to any electronic medium or machine-readable form, in whole or in part, without prior written consent of continued.com, LLC. Any other reproduction in any form without such written permission is prohibited. All materials contained on this site are protected by United States copyright law and may not be reproduced, distributed, transmitted, displayed, published or broadcast without the prior written permission of continued.com, LLC. Users must not access or use for any commercial purposes any part of the site or any services or materials available through the site.

CONTINU ED

Technical issues with the Recording?

- Clear browser cache using these instructions
- Switch to another browser
- Use a hardwired Internet connection
- Restart your computer/device

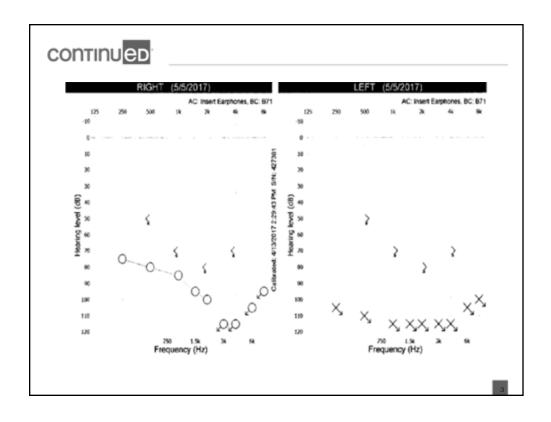
Still having issues?

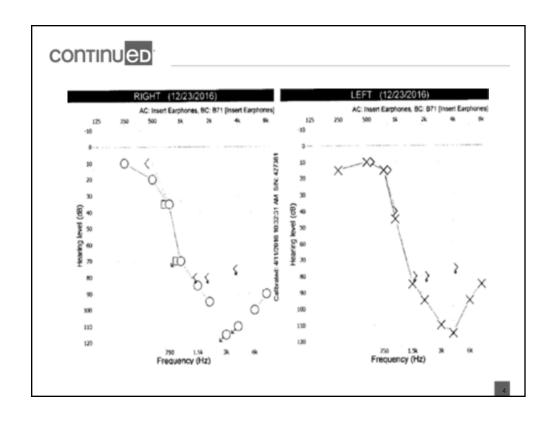
- Call 800-753-2160 (M-F, 8 AM-8 PM ET)
- Email <u>customerservice@AudiologyOnline.com</u>

Candidacy Expansion and Improved Outcomes in Cochlear Implant Surgery

Daniel M. Zeitler, MD FACS
Wilske Chair for Research in Surgery
Section of Otology/Neurotology
Department of Otolaryngology-Head and Neck Surgery
Virginia Mason Medical Center
Seattle, WA, USA

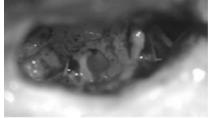
14 August, 2019


Grant supported by NIH R01 DC 010821



Learning Outcomes

- Discuss the advances in surgical technique and electrode design that have contributed to improved outcomes following CI.
- 2. Discuss the use of cochlear implantation as a rehabilitative option for patients with single-sided deafness.
- 3. Review the use of objective tools to determine the subjective sound quality of a cochlear implant.


Why is LF HP important in CI patients?

- Localization (Dunn et al, 2010; Gifford et al, 2014)
- Pitch recognition (Kang et al, 2009; Wright 2012)
- Melody recognition (Dorman et al, 2009; Gfeller et al, 2006)
- Hearing in noise (Dunn et al, 2005; Dorman et al, 2009)
- Speech recognition (Carlson et al, 2011; O'Connell et al, 2016)

continued

Requirements for hearing preservation

- Advances in surgical technique
- 2. Advances in electrode design

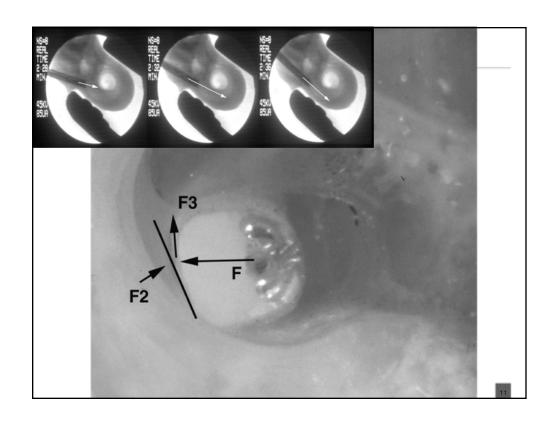
Advances in surgical technique

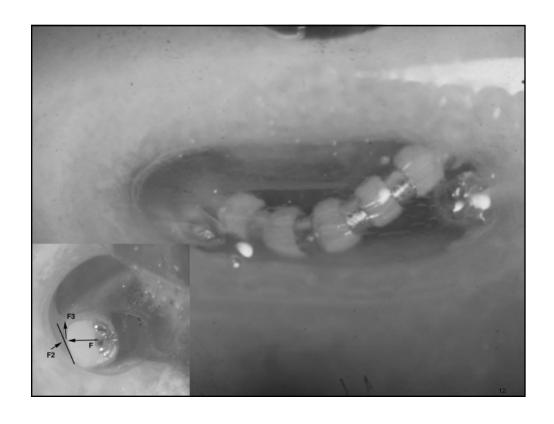
continued

Soft surgical technique

- Ernst Lehnhardt, 1993 (Germany)
 - Minimizing drilling on the cochlea
 - Opening the cochlea as late as possible
 - Avoiding suctioning of perilymph
 - Use of lubricant during insertion (i.e. glycerol)

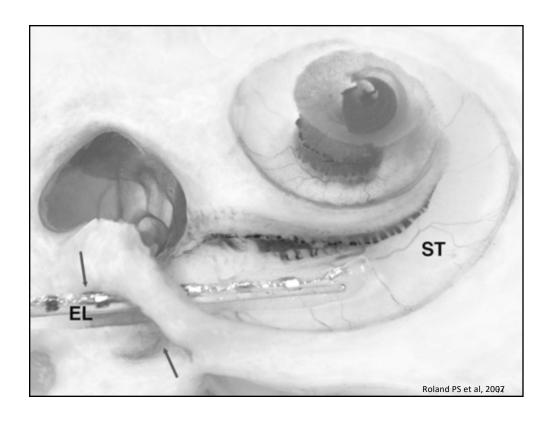
Surgical Technique

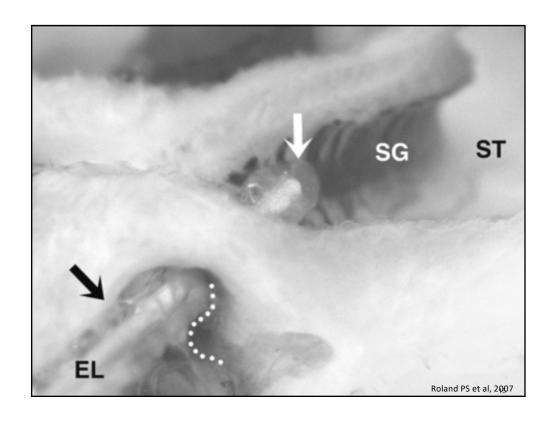

- Minimizing trauma should improve objective outcomes
 - Fracture of osseous spiral lamina
 - Injury to modiolus
 - Compression/tearing of microvasculature
 - Interscalar excursion from ST to SV

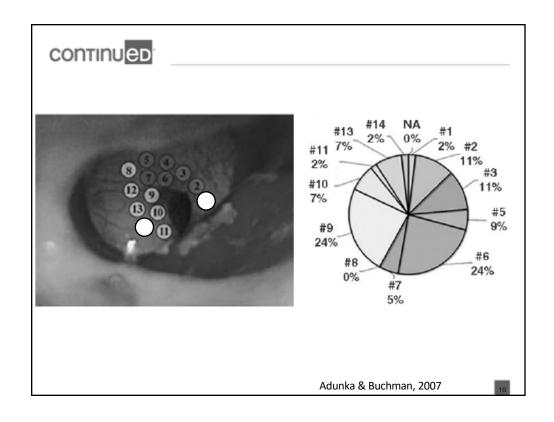

Roland & Wright, 2006

KS=8
REPL
TINE
2:38
MIN
45KU
85UA

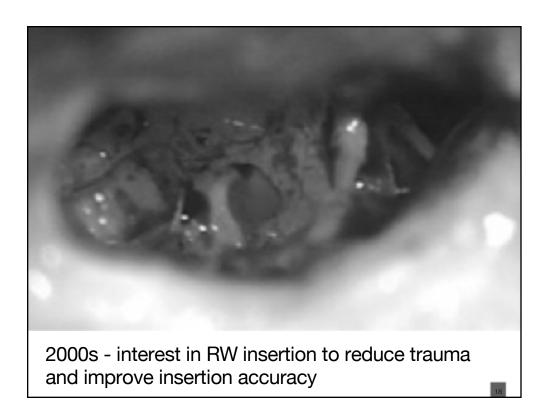
10

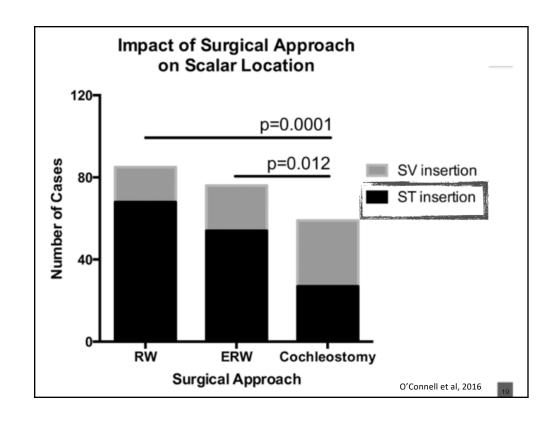


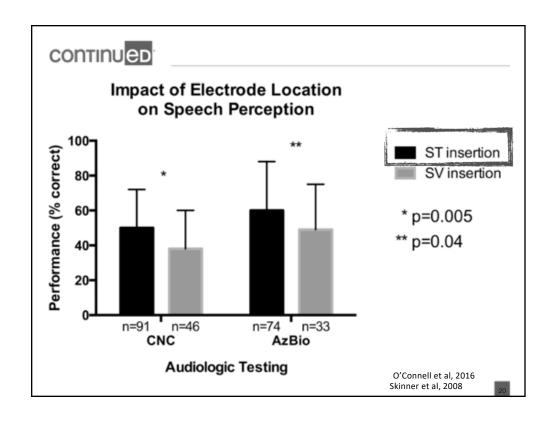

Cochleostomy for electrode insertion


- Early years of CI surgery cochleostomy was dogma
 - Improved visualization
 - Mid-scalar trajectory

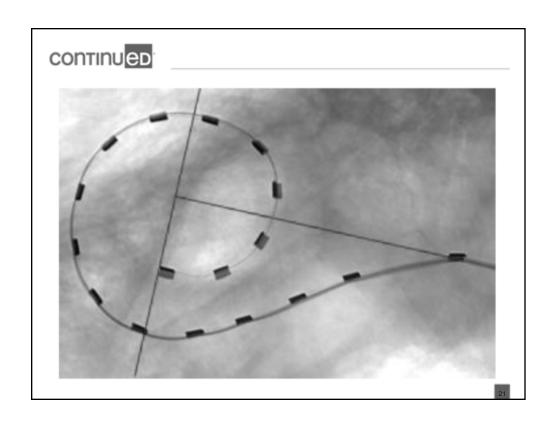
Roland JT, 2005 Roland PS et al, 2007

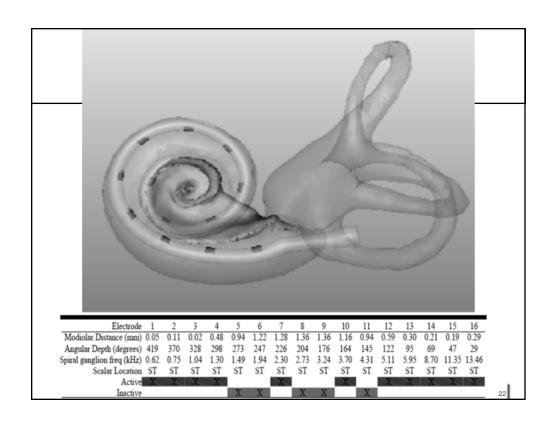


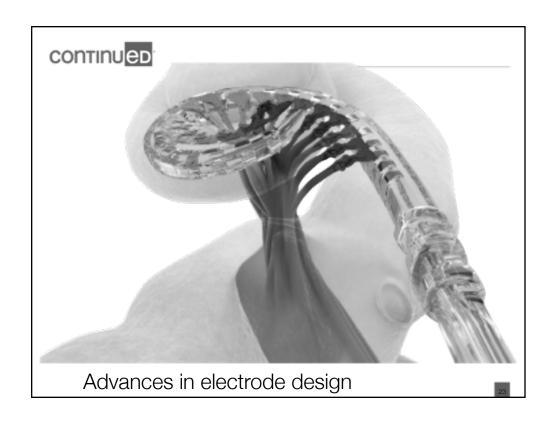


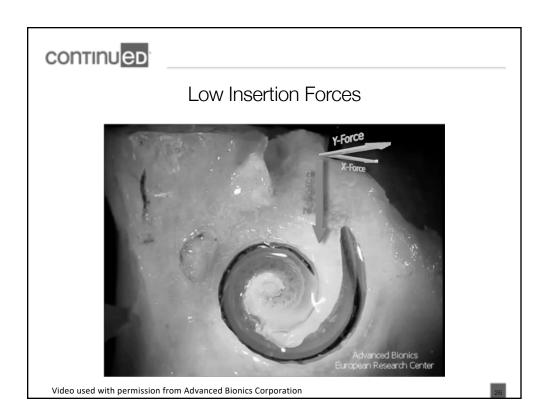


Cochleostomy associated with high rate of electrode placement outside of scala tympani









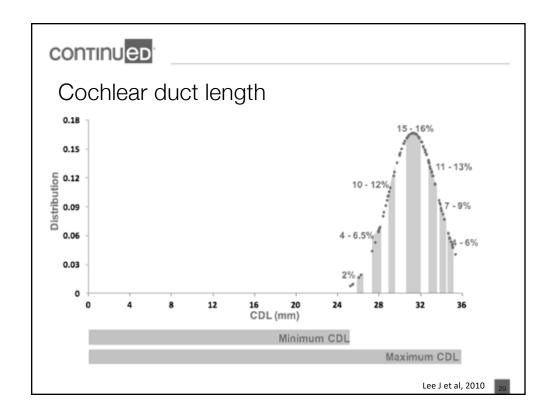
TINU <mark>ed</mark>				Wanna et al,
mplant Type, Sur	gical App	roach, and E	lectrode Loca	ation.
	35 (30.0) 16 (34.0) 19 (27.5)			
	(N = 116)	(n = 47)	(n = 69)	
	N (%)	n (%)	n (%)	P Value
Surgical approach				
Cochleostomy	38 (32.8)	11 (23.4)	27 (39.1)	0.200
Extended round window	43 (37.1)	20 (42.6)	23 (33.3)	
Round window	35 (30.0)	16 (34.0)	19 (27.5)	
Completely within the scala tympani?				
Yes	82 (70.7)	42 (89.4)	40 (58.0)	<0.001
No	34 (29.3)	5 (10.6)	29 (42.0)	

	ic Regression o term Hearing Pr	f Predictive Factors reservation.	s for	
Hearing Preservation Activity	Odds Ratio	95% Confidence Interval	P Value	
Preoperative AC threshold at 250 Hz	0.93	0.90-0.95	<.001	
Diabetes	0.51	0.18-1.42	.20	
Electrode type				
Perimodiolar	Reference			
Lateral wall	3.42	1.36-8.62	.009	
Mid-scala	5.61	1.82-17.34	.003	ì
Surgical approach				
Cochleostomy	Reference			
RW/ERW	0.63	0.22-1.84	.40	
Postoperative oral steroids	1.24	0.64-2.40	.52	

Considerations for design of future cochlear implant electrode arrays: Electrode array stiffness, size, and depth of insertion

Stephen J. Rebscher, MA; Alexander Hetherington, BS; * Ben Bonham, PhD; Peter Wardrop, FRCS; David Whinney, FRCS; Patricia A. Leake, PhD
Department of Otolaryngology, University of California, San Francisco, CA

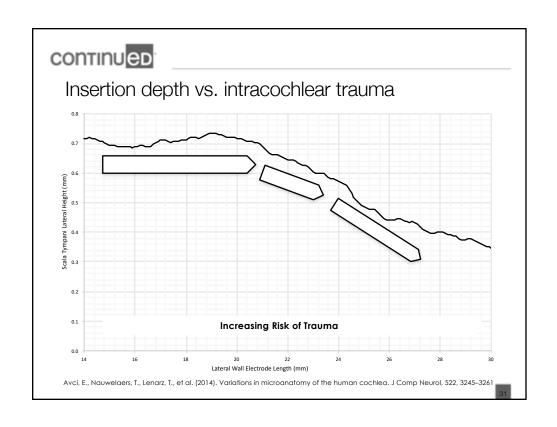
3 primary goals for future electrode design:

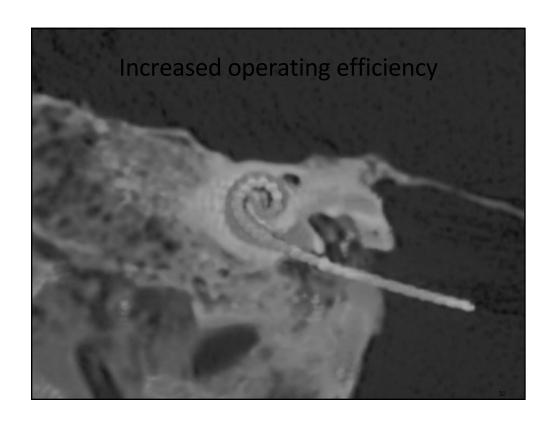

- 1. Reduced intracochlear trauma
- 2. Deeper insertion to access low frequency neurons
- 3. Greater operating efficiency (reduction in stimulus charge requirements)

continued

Electrode location and audiological outcomes

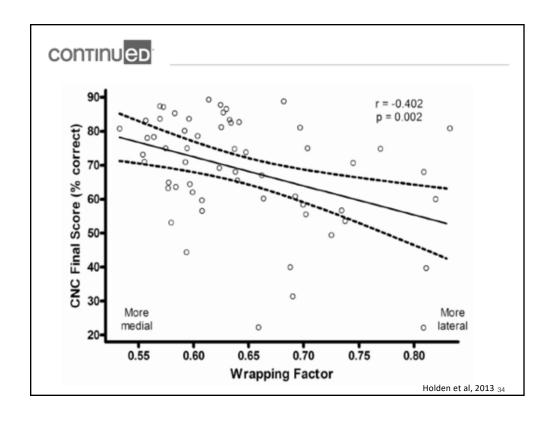
- Positive correlation between CNC word score and:
 - ST electrode location (reduced trauma)
 - Insertion depth
 - Proximity to the modiolus


AID and speech perception outcomes

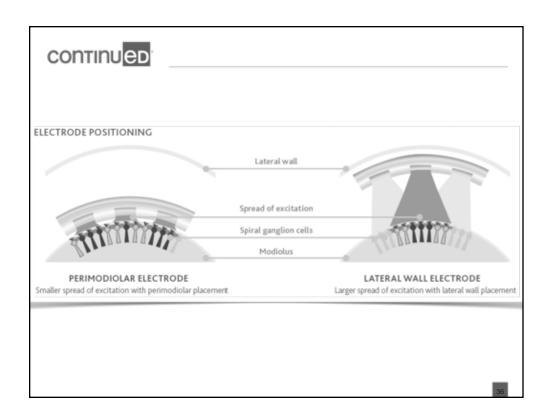

- Systematic review 7 studies (2019)
 - 1/7 AID correlated with word scores (O'Connell, 2016)
- O'Connell, Otol Neurotol 2016**
 - 0.6% increase of CNC for every 10° AID regardless of HP
 - Correlation stronger in cases without HP
- 4/10 excluded for < 1 year with significant (+) correlation

Heutnik F. Otol Neurotol, 2019 Chakrayorti S. Otol Neurotol, 2019

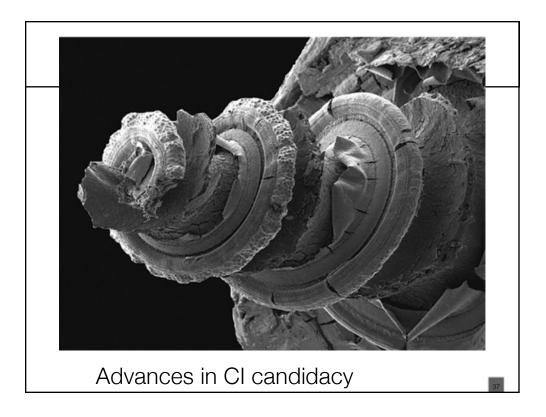
** correlation only for lateral wall/straight arrays; shallower insertion predictive of success in PM arrays



Electrode-modiolar distance


- Reducing EMD:
 - Decreases spread of excitation in cochlea
 - Lower stimulation currents
 - Lower psychophysical thresholds and comfortable levels
 - Improved speech recognition

Runge-Samuelson et al, 2009 Esquia et al, 2013



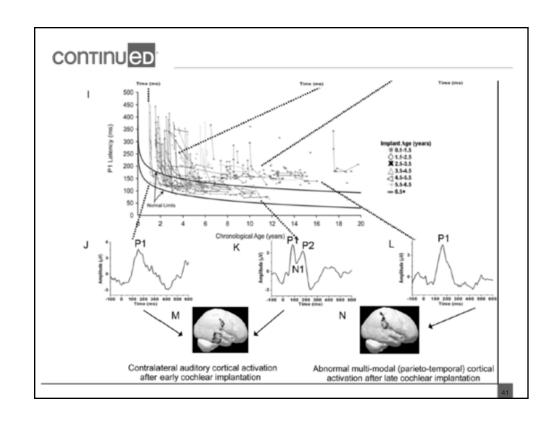
Independent Measures (continued from Table 4) (All Participants)	Outcome Group	CNC Final	CNC Initial
Sealar Location for All Participants (N=114)			
% Elect in ST	.302 ***	.332 ***	ms
% Elect in Mid Pos	ns	ms	10.5
% Elect in ST+Mid	.336 ***	.341 ***	10.5
% Elect in SV	-336 ***	-341 ***	25
Insertion Depth for All Participants(N=114)			
Array Trajectory Length	ns	204 **	-214 *
Angular Pos Apical Elect	ns	ms	ns
Angular Pos Basal Elect	BS	-200 *	ns
1st PC Array Insertion Depth	BS .	-204 *	ms
Medio-lateral Position for Array Insertions with All Electrodes in S	T (N=59)		
Wrapping Factor	na	378 **	ns 🖥

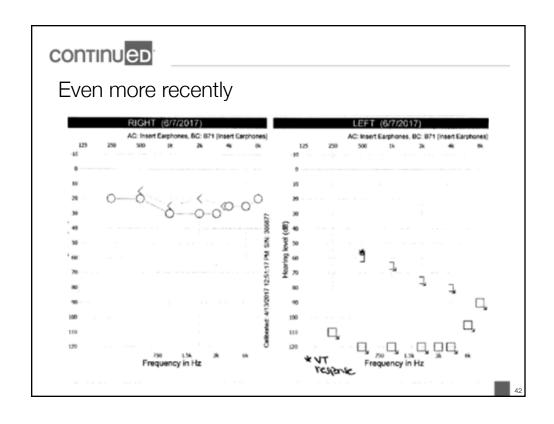
Early implantation and cortical neuroplasticity

Cortical neuroplasticity

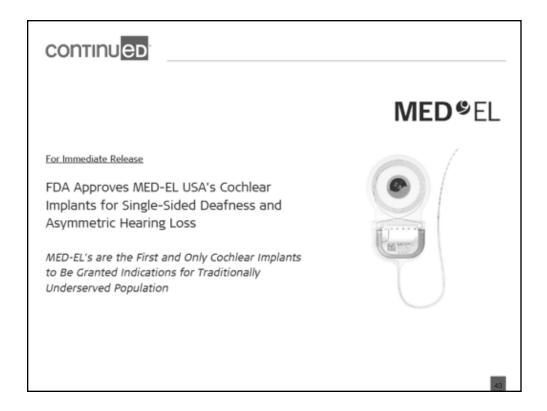
- Juvenile brain has great capacity for plasticity
- "Sensitive periods" stages with high neuronal plasticity
- "Endpoint" after which learning compromised
- Rapid proliferation for 3.5 years followed by "pruning" after 4 years
- Lack of auditory stimulation = lack of cortex development

Sale et al, 2009 Sharma et al, 2002 Huttenlocher et al, 1997


continued


Benefits of early implantation

- Children implanted < 12 months show:
 - Improved comprehension & expressive communication
 - Improved word learning
 - Reduced language delay, equal to chronological age
 - Increased sentence complexity


Ching et al, 2009 Dettman et al, 2007 Cuda et al, 2014 Leigh et al, 2013

CONTINU ED		
It's not only mo	vement that creates	new starting points

cor	ודו	ทบ	eр

It's not only movement that creates new starting points...

Sometimes all it takes is a subtle shift in perspective or a new route to see new options and possibilities

continued

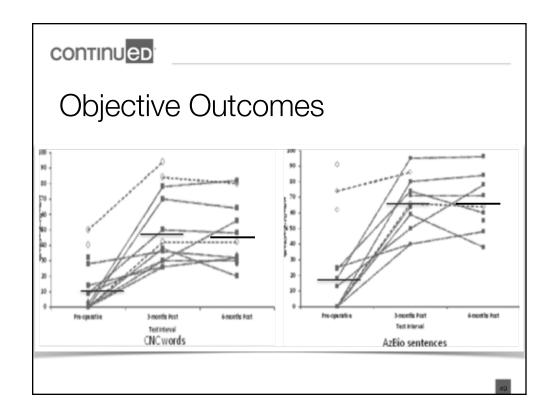
Hypothesis 1: The Pessimist

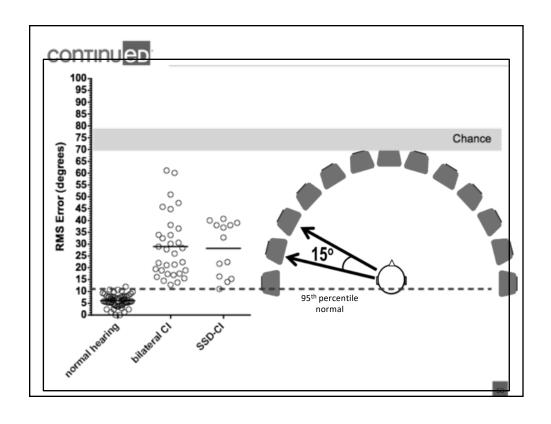
- When excellent signal (NH) and poorer signal (CI) are present, the brain attends to the better signal
- Poorer signal suffers 'neglect'
- Acquisition of speech recognition via Cl is slow, asymptotic performance low, binaural function poor
- Subjective sound quality (judged against NH ear) poor

Hypothesis 2: The Optimist

- When excellent signal (NH) and poorer signal (CI) present, brain always has 'correct' signal
- Optimal condition for learning
- Acquisition of speech recognition via Cl is rapid, asymptotic performance better than average, binaural function good
- NH ear 'teaches' poorer ear, Subjective sound quality good

The Laryngoscope © 2016 The American Laryngological, Rhinological and Otological Society, Inc.


Cochlear Implantation for Single-Sided Deafness:


A Multicenter Study

Douglas P. Sladen, PhD; Christopher D. Frisch, MD; Matthew L. Carlson, MD; Colin L.W. Driscoll, MD; Jennifer H. Torres, MA, CCC-A2; Daniel M. Zeitler, MD

- 23 subjects (17 adults, 6 children)
- Duration of deafness 0.5-9.5 yr (mean = 4 yr)
- Etiology of deafness: ISSNHL=13 (Surgery=4; congenital=3; MD=1, Idiopathic=1; VS=1)

CI for SSD in children & adolescents

International Journal of Pediatric Otorhinolaryngology

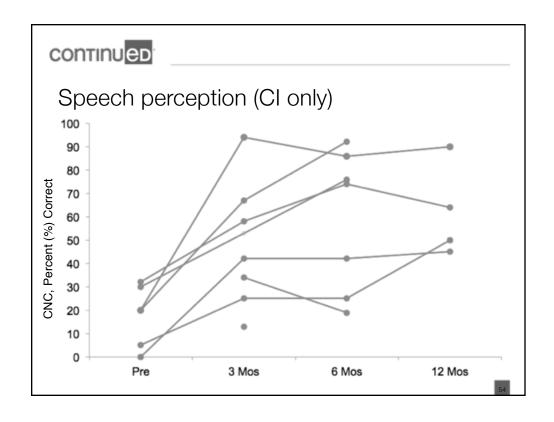
Journal homepage: www.Elsevier.com/locate/ijporl

Cochlear implantation for single-sided deafness in children and adolescents

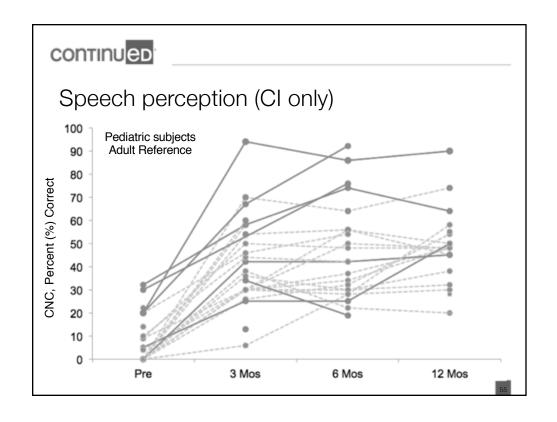
Daniel M. Zeitler^{a,*}, Douglas P. Sladen^b, Melissa D. DeJong^b, Jennifer H. Torres^c, Michael F. Dorman^d, Matthew L. Carlson^b

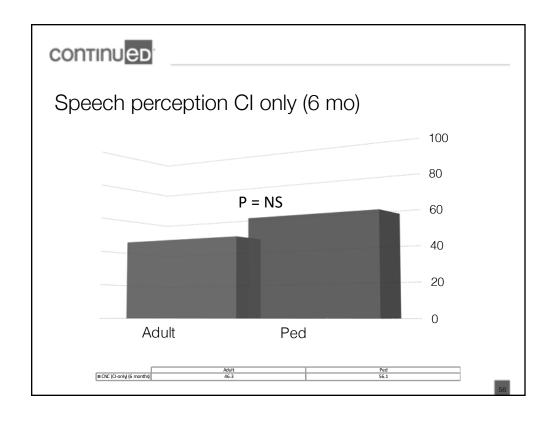
Zeitler, D. M., Sladen, D. P., DeJong, M. D., Torres, J. H., Dorman, M. F., & Carlson, M. L. (2019). Cochlear implantation for single-sided deafness in children and adolescents. *International journal of pediatric otorhinolaryngology*, *118*, 128-133.

^aListen for Life Center, Department of Otolaryngology Head and Neck Surgery, Virginia Mason Medical Center, 1100 Ninth Avenue, Seattle, WA, 98101, USA

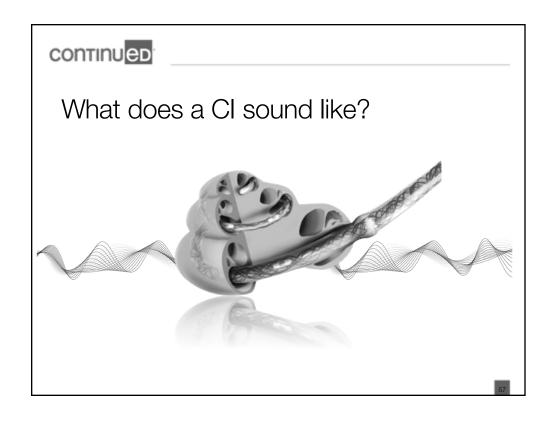

^bDepartment of Otolaryngology Head and Neck Surgery, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905. USA

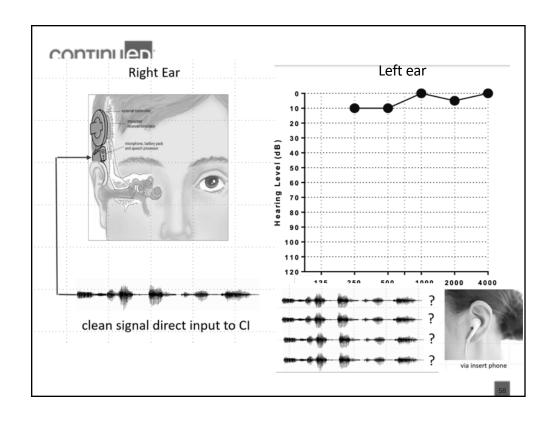
^cDenver Ear Associates, 401 W. Hampden Place #240, Englewood, CO, 80110, USA

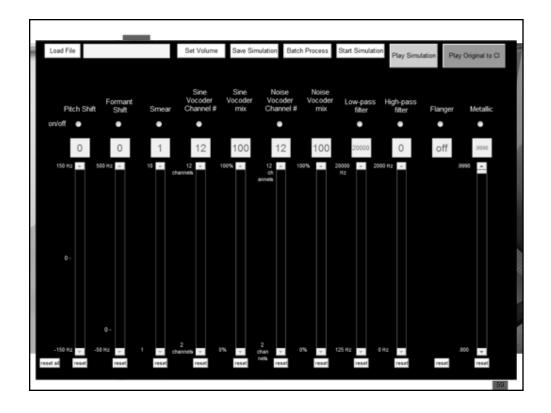

^dDepartment of Speech and Hearing Science, Arizona State University, PO Box 870102, Tempe, AZ, 85287, USA

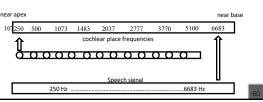


001111	nued	4				
Doo	مانات	don		anhina		
Das	eme	e aen	logra	aphics		
	Age (years)	Gender	Side	Etiology	LOD (years)	F/U (years)
	7.0	М	L	Idiopathic sudden	1.8	1.1
	11.0	М	R	Cholesteatoma	2.9	1.7
	15.0	F	R	Idiopathic sudden	1.6	2.1
	7.0	F	R	Idiopathic sudden	0.8	0.7
	1.5	F	L	Idiopathic congenital	1.5	0.1
	5.8	М	L	Idiopathic congenital	5.8	0.4
	8.9	М	L	Idiopathic congenital	8.9	0.3
	9.5	F	L	Idiopathic congenital	9.5	0.8
	10.0	F	R	Idiopathic progressive	4.0	2.3
Median	8.9	56% F	56% L		2.9	0.8
Mean	8.4				4.1	1.1



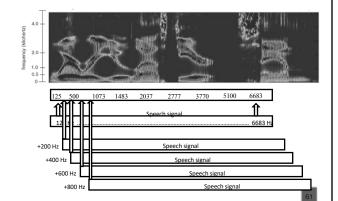


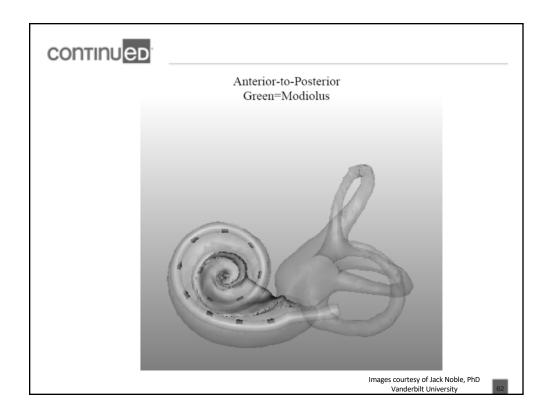




What factors might influence sound quality of a CI?

PLACE-PITCH MATCH


- Greenwood function predicts position of hair cells to frequency that stimulates auditory neuron in SG
- Creates pitch map of cochlea
- Ideally: energy at a given CI input frequency is delivered to a corresponding place frequency in SG



PLACE-PITCH MATCH

- Non-radial trajectories in apex cause failure of frequency alignment, worse further from base of cochlea
- Realistically: signals injected at higher frequencies

Dorman et al, 1997 Shannon et al, 1998 Stakhovskaya et al, 2007

	Electrode	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	
	Angular depth	419	370	328	298	273	247	226	204	176	164	145	122	95	69	47	29	
	Nearest tissue	620	750	1040	1300	1490	1940	2300	2730	3240	3700	4310	5110	5950	8700	11350	13460	-
!	Filter cf	333	455	540	642	762	906	1076	1278	1518	1803	2142	2544	3022	3590	4264	6665	10000
	Offset	+287	+295	+500	+658	+728	+1034	+1224	+1452	+1722	+1897	+2168	+2566	+2928	+5110	+7086	+6795	
2.03x																		
	El	ectrode	•		1	2	3	4	5	6	7	8	9		10	11	12	
	Angular	r depth	(deg.)		525	434	382	337	281	244	210	161	119	9	81	42	18	
-	Freq. at ne	arest ti	ssue (H	z) :	390	590	720	960	1430	1980	2630	3770	521	.0 7	190	12010	14800	I
100	Filter center freq. (Hz)		Filter center freq. (Hz) 120		q. (Hz) 120 235		384	579	836	1175	1624	2222	301	4 4	084	5507	7410	おをのから
	Of	fset (Hz)	+	270	+355	+336	+381	+594	+805	+1006	+1548	8 +219	96 +	3106	+6503	+7390	
1.95x												-						

Consequences of signal-place mismatch

1. Voice pitch (F0) and/or formant frequencies heard as higher than input pitch

2. Voices may have "munchkin" quality

FUNDAMENTAL FREQUENCY (PITCH) UPSHIFT

+ 20 Hz

+ 40 Hz

original

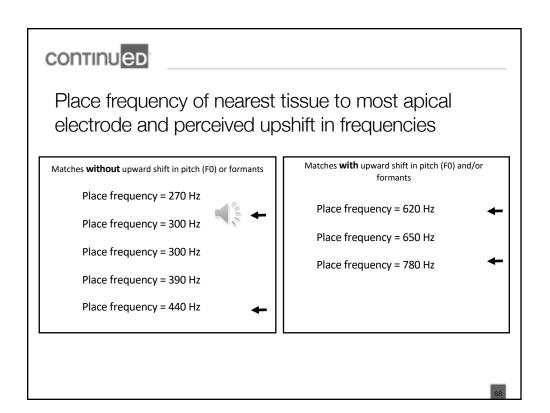
+ 60 Hz

+ 80 Hz

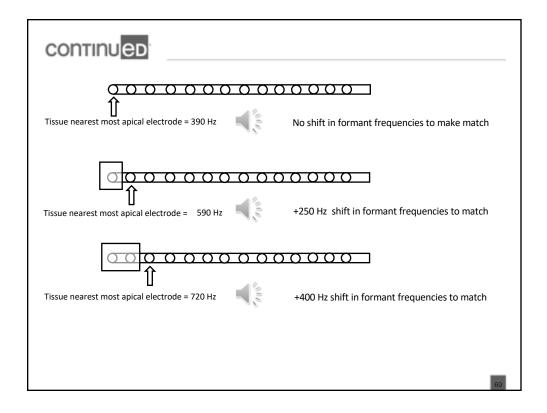
WHOLE SPECTRUM (FORMANTS) UPSHIFT

+ 200 Hz

+ 400 Hz


original

+ 600 Hz


+ 800 Hz

	con	TIL	υe) D	_													
	Electrode	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	
	Angular depth	419	370	328	298	273	247	226	204	176	164	145	122	95	69	47	29	
	Nearest tissue	620	750	1040	1300	1490	1940	2300	2730	3240	3700	4310	5110	5950	8700	11350	13460	
f	Filter cf	333	455	540	642	762	906	1076	1278	1518	1803	2142	2544	3022	3590	4264	6665	を持ちてい
	Offset	+287	+295	+500	+658	+728	+1034	+1224	+1452	+1722	+1897	+2168	+2566	+2928	+5110	+7086	+6795	
ľ																		
	El	ectrode			1	2	3	4	5	6	7	8	9		10	11	12	
	Angular	depth	(deg.)		525	434	382	337	281	244	210	161	115	9	81	42	18	
	Freq. at nearest tissue (Hz)) :	390	590	720	960	1430	1980	2630	3770	521	.0 7	190	12010	14800	ĺ	
	Filter ce	nter fre	q. (Hz)		120	235	384	579	836	1175	1624	2222	301	4 4	084	5507	7410	SECONO.
-1	Of	fset (Hz)	+	270	+355	+336	+381	+594	+805	+1006	+1548	+21	96 +	3106	+6503	+7390	
_ '																	67	1

Conclusions

- Surgical technique and electrode design advancements have led to improved outcomes following cochlear implant surgery
- Atraumatic insertion and scala tympani placement are paramount
- There appear to be significant advantages to implanting children with bilateral deafness younger than 12 months
- Place-pitch match does not have to be precise system can normalize modest offsets…
- There appears to be a limit to normalization at some offset there will be upshift in pitch and/or formant frequencies

