Learning Outcomes

After this course learners will be able to...

• Describe clearly the different methods manufacturers use to create a frequency lowering result.
• Identify when frequency lowering should be employed to enhance patient understanding of speech.
• Explain how to implement a step-by-step fitting procedure that programs frequency lowering for maximum patient benefit.
Outline For Today’s Webinar

- An overview of frequency lowering and when to use it
- Types of frequency lowering approaches
- Goals of frequency lowering verification
- Frequency lowering fitting and verification protocol
- Frequency lowering and the SII score

Frequency Lowering: When to use it
Frequency Lowering

- Process of shifting a range of input frequencies into a lower range of output frequencies
- Designed to improve the audibility of sounds for listeners with high frequency hearing loss

The Concept Behind Changing Output Frequency Content

- Some hearing losses have unaidable regions where important speech information exists
- Re-positioning input energy in these regions to regions that are aidable can provide access to these important speech cues
When To Consider Frequency Lowering

• The area in the green circle has limited audibility (and may contain important speech cues)
• If Audibility cannot be restored
 – By adjusting gain, or
 – By selecting a different hearing aid
• This might be a time to consider frequency lowering

Frequency Lowering: Technological Approaches
Approach #1: Frequency Transposition

With permission from Christine Jones, Au.D., VP of Audiology for Phonak USA
Myirel Nyffeler, Speech Study Coordinator, Phonak Hearing Instruments, Switzerland, Phonak Virtual Audiology Conference, May, 2009

“Cuts” or “Copies” the input frequencies in the Source Region and “Paste” them as output frequencies within the Target Region.
How Might This Look In A Test Box?
Consider the following input condition:

Input Speech LTASS

How Might This Look In A Test Box?
Consider the following input condition:

Altered Input Speech LTASS (Speech 3150)
How Might This Look In A Test Box?

Consider the following input condition:

Speech 3150 (Pink)
Speech 4000 (Blue)
Speech 5000 (Gold)

How Might This Look In A Test Box?

Consider the following input condition:

Speech 6300
How Might This Look In A Test Box?

Here is how these stimuli can be used to “display” frequency transposition:

Aided REAR (Pink)
Speech 5000 Input
(Gold)
FT = OFF

Note alignment of 5000Hz “hump”

How Might This Look In A Test Box?

Here is how these stimuli can be used to “display” frequency transposition:

Aided REAR (Green)
Speech 5000 Input
(Gold)
FT = ON

Note transposition of 5000Hz “hump”
Another Stimulus Option For FL Verification

How Might This Look In A Test Box?

Here is how the “S” stimulus can be used to “display” frequency transposition:

Note transposition of “S” hump
Frequency Transposition Can Be Found In

- **Widex (Audibility Extender)**
 - Use a “Cut” and “Paste” Approach
- **Oticon (Speech Rescue)**
 - Uses a “Copy” and “Paste” Approach

Approach #2: Frequency Compression

With permission from Christine Jones, Au.D., VP of Audiology for Phonak USA
Myirel Nyffeler, Speech Study Coordinator, Phonak Hearing Instruments, Switzerland, Phonak Virtual Audiology Conference, May, 2009
Approach #2: Frequency Compression

With permission from Christine Jones, Au.D., VP of Audiology for Phonak USA
Myirel Nyffeler, Speech Study Coordinator, Phonak Hearing Instruments, Switzerland, Phonak Virtual Audiology Conference, May, 2009

How Might This Look In A Test Box?

Here is how the “S” stimulus can be used to “display” frequency compression:

Note relocation of “S” hump

Frequency Compression Can Be Found In

- Phonak (Sound Recover)
- Sivantos (FC)
- Unitron
Approach #3: Frequency Translation

Let’s start with the following illustration:

- Imagine that this image represents hearing aid channels
- The higher channel numbers represent increasing frequencies

Then, this is how frequency transposition could be represented

With permission from Jeff Crukley, Ph.D. Senior Research Scientist, Starkey Labs
Approach #3: Frequency Translation

- And, this is how frequency compression could be represented

[Diagram showing frequency translation]

With permission from Jeff Crukley, Ph.D. Senior Research Scientist, Starkey Labs

Approach #3: Frequency Translation

- Based on these representations, here is how frequency translation is designed to function

[Diagram showing frequency translation]

With permission from Jeff Crukley, Ph.D. Senior Research Scientist, Starkey Labs

How might this look in a test box?
Here is how the “S” stimulus can be used to “display” frequency translation:

Note relocation of “S” hump AND maintenance of original “S” energy (within the H.A.’s output bandwidth)

Frequency Translation Can Be Found In

- Starkey (Spectral IQ)
Frequency Lowering: Verification Protocol

Goals of Frequency Lowering Verification

• To objectively determine frequency lowering candidacy
Goals of Frequency Lowering Verification

• Confirm restoration of audibility for missing target speech cues
• Confirm restoration accomplished with minimal impact on the original audible bandwidth
• Accomplish the above two goals regardless of frequency lowering approach used

Stimulus Options

• Live “S” and “SH” produced by testing clinician:
 – Advantages:
 • Represents critical phonemes important to capture when frequency lowering is being used
 • Easily produced
 – Disadvantage:
 • Not presented at a calibrated spectrum and level, thus subject to inter-test variability
Stimulus Options

• The Audioscan “filtered” carrot passage input options:
 – Advantage:
 • Calibrated and pre-stored in system, eliminating issue of inter-test variability
 – Disadvantages:
 • Bandwidth narrower than the frication bandwidth of naturally produced “S” and “SH”
 • Based on LTASS level rather than peak level
 • May underestimate delivered audibility

Stimulus Options

• Calibrated and stored “S” and “SH” stimuli
 – Advantages
 • Delivers a more representative bandwidth of these fricatives
 • Captures peak energy level components that contribute to overall audibility
 • Stored and calibrated for solid test-retest reliability
Method For Creating Calibrated Fricative Stimuli

• Excised fricatives from the ISTS signal
 – Multiple talkers and running speech
• Compared these fricatives to other clinically produced signals
 – Single talker and isolated fricative production
• This led to a solid definition of the frequency range and energy levels of interest for each phoneme
• White noise was then shaped to fabricate these targeted bandwidth and energy level components.

The “S” and “SH” Input Stimulus Spectra

Clinical Procedure

Step One:

- Complete a Speechmap verification fitting
 - Ensure that any frequency lowering feature has been turned OFF during this process
 - Isolate and display the 65dB REAR image

Step Two:

- With noise reduction OFF, determine if this fitting restores audibility for the “S” stimulus at 65dB SPL input level
 - If not, your options are:
 - Add more high frequency gain until “S” audibility has been restored
 - Switch to a different hearing aid that may be capable of delivering this additional gain
 - Activate frequency lowering to move the “S” stimulus into an aidable frequency area
Clinical Procedure

Step Three:

- Identify the MAOF Range
 - (Maximum Audible Output Frequency)
 - Low frequency end of the MAOF Range = frequency where aided LTASS crosses under threshold
 - High frequency end of the MAOF Range = frequency where the peaks of speech (99th percentile line) crosses under threshold

Activating the Audioscan MAOF “Highlighter”

- Select a test and activate the “S” stimulus option (as before)
- While test is running, open the “Show MAOF” pull-down menu
- Select the 65 dB REAR you wish to use to identify the target MAOF Range
- This will automatically display a highlighted area on the audiogram that is the MAOF Range
Clinical Procedure

Step Four:
- Turn frequency lowering feature ON at its default settings
- Check for audibility of “S” stimulus
 - Target positioning the upper shoulder of the “S” stimulus within the MAOF Range
- If default settings don’t achieve target positioning, adjust the FL feature until target positioning has been acquired

Clinical Procedure

Step Five:
- Activate another test, now using the “SH” stimulus instead of the “S” stimulus
- Check for the following:
 - That the “SH” stimulus is also audible
 - That the “SH” audibility spectrum is different than the “S” audibility spectrum
Clinical Procedure

Step Six:

• Perform a listening check
 – Determine whether the sound quality and distinctiveness of speech are acceptable

Step Seven:

• Re-enable noise reduction if this is a component of the fitting

Fitting and Post Fitting:

• At Fitting and Follow up, consider listener’s responses, and/or outcome measures re: perceived sound quality & ability to distinguish "S" and "SH".
• Inform caregivers and/or therapists of the altered sound quality that has now been engaged
Frequency lowering and the SII score

What Is SII?

- Quantifies likely intelligibility based on the audibility of various speech cues

Aided and Unaided SII Inside of Speechmap

SII Scores Do Not Appear With “S” and “SH”

- Main Reason:
 - These stimuli do not produce an aided broadband speech result - which is what the SII calculation is designed to quantify
The SHARP Audibility Estimates with Nonlinear Frequency Compression

- The “Situational Hearing Aid Response Profile”
- Developed at the Boys Town National Research Hospital
- Added a frequency lowering intelligibility estimate feature in 2014

https://journals.lww.com/thehearingjournal/Fulltext/2014/03000/SHARP_Updates_Enable_Audibility_Estimates_with.7.aspx

Conventional SHARP Display
SHARP Display With “Freq Comp” Selected

To Summarize:

• Frequency lowering can be activated to restore audibility for speech sounds that may fall outside of a patient’s aidable frequency range
• Several methods of applying frequency lowering are available
 – Frequency transposition
 – Frequency compression
 – Frequency translation
To Summarize:

• Verification technology can be used to:
 – Objectively determine frequency lowering candidacy
 – Adjust frequency lowering settings to restore audibility for important speech cues with minimal interference with the existing aided bandwidth
 – Verify sound quality and distinctiveness
 – Aid in counseling

Follow-Up

• For additional information on frequency lowering verification:
 – Visit the education section of the Audioscan website (www.audioscan.com)
 – Consult the User Guide of your Audioscan verification equipment
Thank You!

info@audioscan.com