Compression Basics: An Overview

CAN YOU HEAR ME?
If you are having technical problems, please stay logged on and call Audiology Online at 1-800-753-2160

This session is available for 1.1 CEU
Must stay logged on for the full session
Must successfully complete a short quiz

Learning Objectives
After this course:
1. Participants will be able to identify the different types of compression
2. Participants will be able to define compression threshold kneepoint
3. Participants will be able to define compression ratio
4. Participants will know the rationale behind wide dynamic range compression

WHY Compression?
HOW does this change in the case of hearing loss?

Normal Hearing

Dynamic Range

- Intense Sounds
- Moderate Sounds
- Weak Sounds

Too Soft

Too Loud

Range of Environmental Sounds

Dynamic Range of Hearing

HEARING IMPAIRED

Dynamic Range

- Intense Sounds
- Moderate Sounds
- Weak Sounds

Too Soft

Too Loud

Range of Environmental Sounds

Dynamic Range of Hearing

Recruitment

Sounds get louder more quickly for someone with sensorineural hearing loss.
Squeezing an Elephant Into a Suitcase

Goal
Fitting the world of sound (the elephant) into the dynamic range of the individual with hearing impairment (the suitcase).

Bottom Line
• Soft sounds must be made audible
• Loud sounds cannot become uncomfortably loud
• Speech should remain at a comfortable level

WHAT are the most important sounds for a person to hear?

Average Conversational Speech Spans a Range of 30dB
Signal processing approaches
Compression in the Modern Hearing Aid

Linear Approaches

Linear Amplification
A fixed amount of gain regardless of input level
- 1:1 Ratio (gain : output)

Maximum output
Maximum Output
- Highest possible signal that a hearing aid capable of delivering
 - Saturation (Peak Clipping)
 - Input level and gain exceed the maximum output

Limitations of Linear Approaches
While making soft sounds audible…
- Average conversational speech is now loud
- Intense sounds are amplified beyond the upper end of the dynamic range making them uncomfortably, or even painfully, loud
- Peak clipping is distortion
Cases in which linear approaches still apply

- Long-time linear technology users
- Severe to profound hearing losses
- Conductive & mixed hearing losses

Compression Terms

- Threshold kneepoint
- Compression Ratio
- Attack and Release Time
- Output compression limiting

Threshold Kneepoint (TK)

- Point at which compression is activated
- Also referred to as Compression Threshold (CT)

*Advanced hearing aids have multiple kneepoints

Compression Threshold/Threshold Kneepoint (TK)

Controls how long linear gain and/or expansion is in effect

Considerations:

- Higher TK
- Linear longer
- May be beneficial for more severe hearing losses and previous hearing aid wearers
Compression terms

Compression Ratio (CR)
- Determines how much the signal will be compressed
- Expressed in a ratio:
 - 1:1 = linear
 - >1:1 = compression

Compression Ratio

Considerations:
- Lower CR
 - Improves audibility of the softer components of speech
 - Restores loudness perception
 - May be beneficial for more mild hearing losses and new hearing aid wearers
 - May over amplify softer, non-important environmental sounds
- High CR
 - May provide comfort to sounds, but may adversely affect the clarity and pleasantness of the amplified sound
 - Muffled sound quality

Attack and Release Times

Lengths of time it takes for a compression circuit to respond to intensity changes of input/environmental sounds

Attack time
Length of time it takes a hearing aid to go into compression and reduce gain.

Release Time
The length of time it takes for the hearing aid to come out of compression, and restore gain.
Attack and Release Times
Considerations
• Faster AT:
 - The faster they benefit from compression – soft sounds audible, loud sounds not too loud etc.
 - BUT if too fast: can negatively impact sound quality
• Longer RT
 - Ensure variability doesn’t impact the processed signal
 - BUT if too long: can effect intelligibility of speech following transient sound

How does the volume control interact with compression settings?

Basic Hearing Aid Components

Input Compression (AGC-i)
• Compression acts before the volume control
• TK is not effected by volume control changes
• Most commonly used with wide dynamic range compression

Output Compression (AGC-O)
• Compression acts after the volume control
• TK is effected
• The volume control has no input on maximum output of hearing aid

Compression limiting
• Use of compression to control or limit loud sounds without causing distortion
 • High TK’s (70 dB or greater)
 • High CR’s (8:1 or greater)
Wide Dynamic Range
Compression & Expansion

Wide Dynamic Range Compression

WDRC
- AGC-I
- Low TKs: Below 50 dB SPL
- Variety of CRs: 1:1 to 4:1
- Variable AT & RT

Expansion & Limitation of Compression

In Compression:
- Soft sounds are amplified to a greater extent than moderate & intense sounds
- This improves speech intelligibility

BUT...
- Unwanted sounds are made audible as well

Expansion

Principle:
- Soft sounds are not amplified
- Ensure you do not provide any gain below a certain input level

How it functions:
- It only applies to the weakest sounds in the environment
- Different amounts of gain are applied dependent on input level

Expansion Threshold (XT/TK)

Input level below which expansion operates
- Expansion acts BELOW the TK/XT
Expansion Ratio (XR)

Extent which an input signal is expanded.

\[XR = \frac{\Delta \text{Input}}{\Delta \text{Output}} \]

Expansion threshold Considerations

Low XT:
- 40 dB or lower
- Pro: Ensures speech audibility at lower levels
- Con: May still be a ‘noisy’ hearing device

High XT:
- 50 dB or greater
- Pro: Quieter hearing device
- Con: Negative impact on speech audibility

Expansion ratio vs. Compression ratio

Remember...
- A CR of 1 is linear
- CR when compression is acting is always greater than 1

XR:
- Always between 0 and 1 when expansion is being applied.

Expansion Ratio

The steeper the slope, the greater degree of expansion

Expansion

XR is typically separate from CR in hearing aids

Quiet

Enhancing Expansion with our patented fast-acting noise management, Acuity Quiet makes hearing aids quieter in low level environments than what is possible with Expansion alone.
Channels vs. bands

- Terms often used interchangeably
- Specifics of how defined can slightly differ in the literature or between manufacturers

BANDS

SHAPE FREQUENCY RESPONSE of the hearing aid

Accommodate LOUDNESS TOLERANCES

16 Bands

20 Bands
24 Bands

CHANNELS

Implementation of
ADVANCED FEATURES
to provide more
PRECISE NOISE CONTROL

Prescriptive Fitting
Procedures/Fitting Formulas

The compression architecture:
• Proprietary fitting formulas
 - Manufacturer specific
• Generic fitting formulas, not manufacturer specific
 - NAL-1/NAL-2. NAL-R
 - DSL

Fitting Formulas Within Inspire
• Variety of fitting formulas are available
• e-STAT is the default

NAL-R
• Linear formula
• Utilizes a loudness equalization rationale
NAL-NL1

- Development based of NAL-R
- WDRC
- Based upon predictive model for speech intelligibility
 - Derived ANSI SII
- Utilizes a loudness normalization rationale

NAL-NL2

- Developed based empirical data collected over a decade regarding NAL-NL1
- Still WDRC
- Primary goal remained the same
 - Loudness normalization
 - Predictive model of speech intelligibility

DSL v5.0

- Desired Sensation Level
- Developed for pediatric fittings

- Compression characteristics:
 - Dependent on the severity of loss.
 - Closer resembles a loudness equalization rationale: full audibility, including in quiet environments is the priority.
Evidence-Based Statistic Analysis (eSTAT)
Starkey proprietary formula:
• Developed to work specifically with Starkey products
• Main goal:
 - To maximize audibility and speech understanding
• Utilizes WDRC principles:
 - Low CR, low CT & fast-acting.
• Continues to be optimized for the best fitting starting point possible
 - Based on research and professional input

Independent Speech Optimization (ISO-C)
Goal:
• Provide the best sound quality possible for soft speech
• Provide independent gain controls for soft vs. moderate vs. loud sounds within the Inspire software

Speech Optimization: Starkey Compression
• Starkey WDRC compression system gain changes track speech input smoothly, quickly and accurately
• Allows for precise, intuitive management of speech by allowing discrete gain adjustments
• Per channel changes to soft, moderate and loud speech inputs
• Compression Kneepoints based on the Long Term Average Speech Spectrum (LTASS)
 - Provides max gain at soft speech inputs
• Compression Ratios change based on the gain required at each frequency and input level
• Compression architecture defines sound quality
Twin Compressor Technology

Speech
Acuity Speech Optimization

Music
Music Enhancement

Unique Music Compression
10 kHz Bandwidth
Compression Variables Optimized for Music
Loud Music Processed without Distortion
Proprietary music fitting formula
Linear Gain at High Inputs to Restore Loudness
Why not the same approach for everyone?

- Linear alone does not accommodate a reduced dynamic range
- WDRC is not for everyone
- Not everyone prefers the same fitting formula
- People have different preferences for sound quality and reactions to amplification
- Dynamic Range varies greatly from person to person
- Digital products offer the ability to combine various approaches