

MICROTIA

- Microtia means "little ear"
- 1 in 6,000 to 12,000 babies
- boys > girls
- right > left

MICROTIA

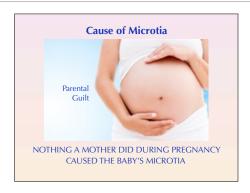
- Microtia means "little ear"
- 1 in 6,000 to 12,000 babies
- boys > girls
- right > left
- Bilateral microtia:7-22%

MICROTIA

Syndromic/other anomalies are seen in 20-60%

Oculo-Auriculo-Vertebral Syndrome Treacher Collins (OAVS)

MICROTIA


Higher Prevalence in

- Asians
- Hispanics
- Native Americans

AURAL ATRESIA Failure of the ear canal to open Complete Atresia Aural Stenosis

AURAL ATRESIA

- 1 in 10,000 to 20,000 babies
- 70% unilateral, 30% bilateral
- boys > girls
- right > left

Treatment Options for Atresia

- Bone Anchored Hearing Systems
- Middle Ear Implants
- Atresia Repair

Creating an ear is widely accepted as one of the most challenging operations performed in all of plastic surgery

6th Century BCE

Susruta Samhita

First description of ear surgery. A cheek flap was suggested for repairing the earlobe.

16th Century

Used tissue from behind the ear to repair traumatic ear deformities

1920

Sir Harold Gillies "Father of Plastic Surgery" Microtia reconstructions using cadaver rib cartilage and maternal rib cartilage (resorbed)

1959

Dr. Radford Tanzer
Father of Cartilage Ear Surgery
Used the patients own rib
cartilage.
Excellent results with a 6 stage
technique - the basis of today's
cartilage ear reconstructions

1966

Dr. Thomas Cronin
Ear reconstructions using a silicone framework.
Initial results were good.
Plagued by infection and extrusion.

1970's to present

Rib Cartilage technique is the GOLD STANDARD

Same basic procedure, but condensed into fewer stages

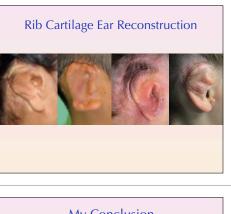
Attempts to minimize the negatives (scars, pain, poor outcome)

Rib Cartilage Ear Reconstruction 3 ribs are removed from the chest Standard of care for > 60 years Safe and durable

Rib Cartilage Ear Reconstruction

- Inpatient hospitalization
- Multiple surgeries (up to 4)
- The rib removal is painful
- Surgery must be delayed until the child is old enough to have enough rib cartilage to form an adult size ear (10 years)
- Requires a lot of experience to get consistent results

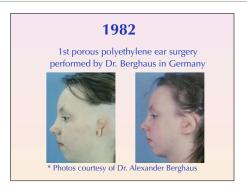
Rib Cartilage Ear Reconstruction



Rib Cartilage Ear Reconstruction After suction is placed, The skin pocket tightens and the form of the ear framework is seen * Photo courtesy of **Dr. Lella Kasrai**

My Conclusion

The Rib Cartilage technique **cannot** achieve the delicacy and 3-dimensional complexity of a natural ear.

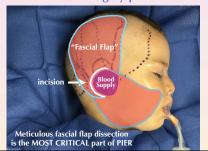

Porous Implant Ear Reconstruction (PIER)

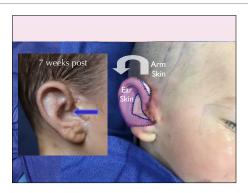
Implant-Based Technology High Density Porous Polyethylene

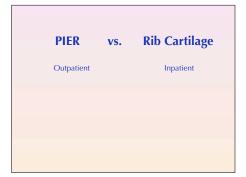
- First developed 1970's
- First used clinically in the 1980's
- Light weight (50% air due to "pores")
- Least reactive material (FDA)

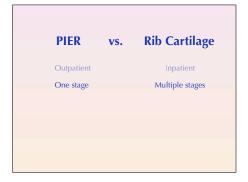
designed to allow the body's tissue to grow into the implant

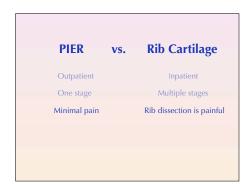
- Can be very thin, yet still strong
- Biocompatible
- ⊚ 2015: Su-Por
- Not flexible
- Must be covered 100% with the body's own tissues

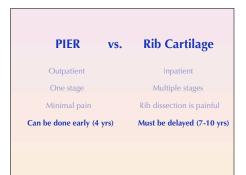

How is PIER surgery performed?

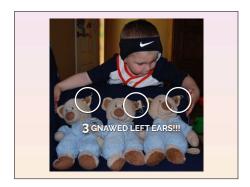

How is PIER surgery performed?

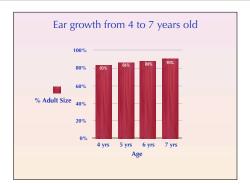


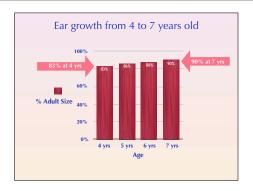

How is PIER surgery performed?

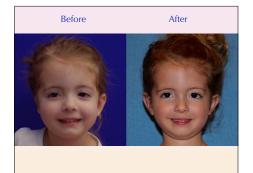


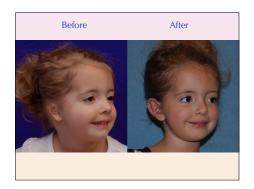


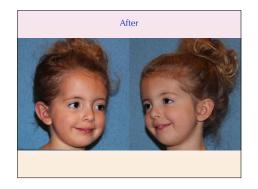


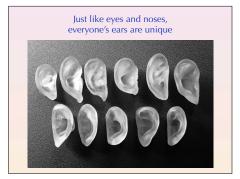


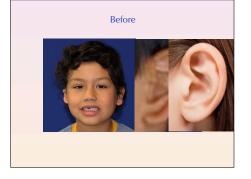


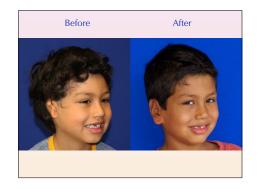


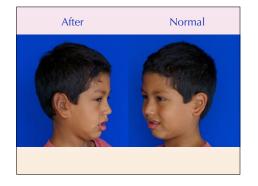

Advantages of early surgery

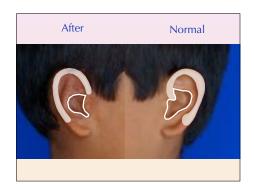

- Less anxiety
- Less anxiety
 Experience less pain
 Earlier increase in confidence and self esteem
 Less memory of the process
 Less exposure to teasing & bullying
 Completed ear(s) before kindergarten


Post-op Result

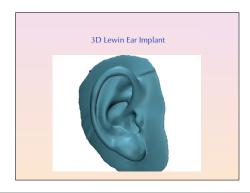












3D Lewin Ear Implants

Manufactured by Su-Por

3D Lewin Ear Implants

- Manufactured by Su-Por
- First surgeon to offer a 3D ear implant

3D Lewin Ear Implants

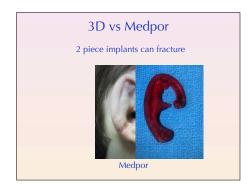
- Manufactured by Su-Por
- First surgeon to offer a 3D ear implant
- 1-piece implant, much stronger and more stable

3D Lewin Ear Implants

- Manufactured by Su-Por
- First surgeon to offer a 3D ear implant
- 1-piece implant, much stronger and more stable
- Creates a "perfect" match

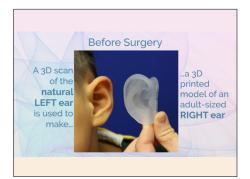
3D Lewin Ear Implants

- Manufactured by Su-Por
- First surgeon to offer a 3D ear implant
- 1-piece implant, much stronger and more stable
- Creates a "perfect" match
- Bilateral patients...still get a 3D ear implant


3D Lewin Ear Implants

- Manufactured by Su-Por
- First surgeon to offer a 3D ear implant
- 1-piece implant, much stronger and more stable
- Creates a "perfect" match
- Bilateral patients...still get a 3D ear implant
- Over 70 3D implants in the past year

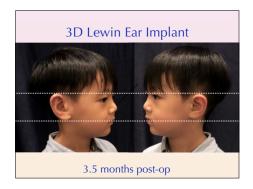
3D Printing vs. 3D scanning

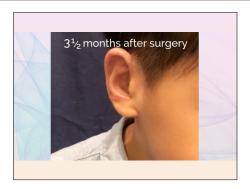

3D Scanning is the process of visually capturing a 3 dimensional object

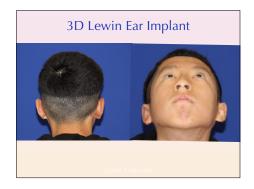
3D Printing the action or process of making a physical object from a three-dimensional digital model, typically by laying down many thin layers of a material

3D vs Medpor

This was a critical problem to solve, because a fractured implant REQUIRES SURGERY to remove and replace the implant







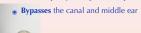
Risks of PIER

- Fracture
- Exposure
- Infection
- Nerve injury to eyebrowFailure of PIER

Fracture

COMPLICATIONS: Porous Implant Ear Reconstruction 395 consecutive* patients from Jan 1, 2013 to Dec 31, 2018
*All patients with previous ear surgery were excluded

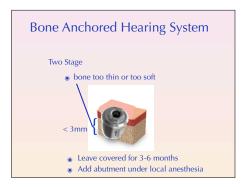
Dr. Sheryl Lewin Complication Rates in the past 6 years


Complication	ALL PIER	Lewin	
Exposure (Hole)	7.8%	4%	
Fracture	2.9%	0%	
Infection	2%	2%	
Bleeding	1%	2%	
Nerve Injury	1%	0%	
Vascular Injury	0	0%	

Bone Anchored Hearing System (BAHS / BAHA)

Converts sound into vibrations creating a DRIVING FORCE

Processor → implant → bone → cochlea


Bone Anchored Hearing System (BAHS / BAHA)

- Excellent sound conductionAllows for better sound localization

Bone Anchored Hearing System Risks

- Bleeding
- Infection
- Healing issues
- CSF leak
- Poor osseointegration

Atresia Repair Surgery *Only 50% of children with atresia are considered "good" candidates for surgery

Atresia Repair is UNPREDICTABLE Atresia Repair is UNPREDICTABLE Even with the best surgeon in the world, hearing improvement cannot be predicted Atresia Repair is UNPREDICTABLE Even with the best surgeon in the world, hearing improvement cannot be predicted Long term data hasn't proven the hearing gains will last Atresia Repair is UNPREDICTABLE Even with the best surgeon in the world, hearing improvement cannot be predicted Long term data hasn't proven the hearing gains will last ● Life-long care is required to clean the canal

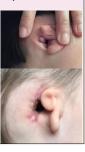
Atresia Repair is UNPREDICTABLE

- Even with the best surgeon in the world, hearing improvement cannot be predicted
- Long term data hasn't proven the hearing gains will last
- Life-long care is required to clean the canal
- Most of the world has abandoned this surgery

Atresia Repair is UNPREDICTABLE

- Even with the best surgeon in the world, hearing improvement cannot be predicted
- Long term data hasn't proven the hearing gains will last
- Life-long care is required to clean the canal
- Most of the world has abandoned this surgery
- I have had 2 patients in the past year who have LOST THEIR EAR IMPLANT from complications of the canal

Atresia Repair is UNPREDICTABLE


- Even with the best surgeon in the world, hearing improvement cannot be predicted
- Long term data hasn't proven the hearing gains will last
- $_{\scriptsize \scriptsize \odot}$ Life-long care is required to clean the canal
- Most of the world has abandoned this surgery
- 1 have had 2 patients in the past year who have LOST THEIR EAR IMPLANT from complications of the canal
- I have had several patients have to get their canals closed

Normal Ear Atresia Repair Altesia Repair

Risks of Atresia Repair

- Infection
- Eardrum separation
- Closing of the canal (stenosis)
- Hearing nerve injury
- Facial nerve injury
- Hearing loss over time
- Bone exposure
- Keloid
- Failure (requires reversing the surgery)

Atresia Options: RISK vs REWARD

ATRESIA REPAIR =

HIGH RISK / UNPREDICTABLE REWARD

UPSIDE: Doesn't require a visible device Particularly significant in bilateral patients

DOWNSIDE: Hearing gain may be minimal or temporary May still require BAHS/BAHA Poor aesthetic appearance

Atresia Options: RISK vs REWARD

Bone Anchored Hearing System LOW RISK / HIGH REWARD

UPSIDE: "Normal" hearing Minor surgery (minimal risks) Processors getting smaller

DOWNSIDE: Visible device Infections

