

- 1. This document was created to support maximum accessibility for all learners. If you would like to print a hard copy of this document, please follow the general instructions below to print multiple slides on a single page or in black and white.
- 2. If you are viewing this course as a recorded course after the live webinar, you can use the scroll bar at the bottom of the player window to pause and navigate the course.
- 3. This handout is for reference only. Non-essential images have been removed for your convenience. Any links included in the handout are current at the time of the live webinar, but are subject to change and may not be current at a later date.
- 4. Copyright: Images used in this course are used in compliance with copyright laws and where required, permission has been secured to use the images in this course. All use of these images outside of this course may be in violation of copyright laws and is strictly prohibited.

How to print Handouts

- On a PC
 - Open PDF
 - Click Print
 - Choose # of pages per sheet from dropdown menu
 - Choose Black and White from "Color" dropdown
- On a Mac
 - Open PDF in Preview
 - Click File
 - Click Print
 - Click dropdown menu on the right "preview"
 - Click layout
- Choose # of pages per sheet from dropdown menu
- Checkmark Black & White if wanted.
- If more details needed please visit our FAQ page: https://www.audiologyonline.com/help

No part of the materials available through the continued.com site may be copied, photocopied, reproduced, translated or reduced to any electronic medium or machine-readable form, in whole or in part, without prior written consent of continued.com, LLC. Any other reproduction in any form without such written permission is prohibited. All materials contained on this site are protected by United States copyright law and may not be reproduced, distributed, transmitted, displayed, published or broadcast without the prior written permission of continued.com, LLC. Users must not access or use for any commercial purposes any part of the site or any services or materials available through the site.

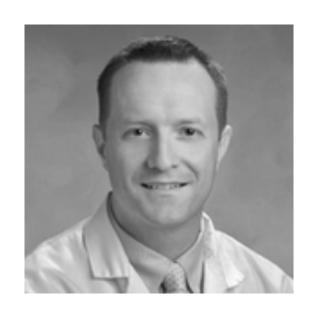
Technical issues with the Recording?

- Clear browser cache using these instructions
- Switch to another browser
- Use a hardwired Internet connection
- Restart your computer/device

Still having issues?

- Call 800-753-2160 (M-F, 8 AM-8 PM ET)
- Email customerservice@AudiologyOnline.com

Oculomotor Assessment in Children,


presented in partnership with Seminars in Hearing

Steven M. Doettl, AuD, PhD and Devin L. McCaslin, PhD

Steven M. Doettl,

Dr. Doettl is a Professor, clinical supervisor and practicing audiologist in the Department of Audiology and Speech Pathology, College of Health Professions, at the University of Tennessee Health Science Center. He is the Coordinator of the University of Tennessee Hearing and Speech Center Dizziness Clinic, which provides clinical vestibular assessments for infants to adults. He is also the Director of the Vestibular and Balance Laboratory with specific research interests focusing on accuracy and efficiency of vestibular assessment as well as assessment in the pediatrics and in the hearing-impaired populations. Dr. Doettl has presented and published recently on the international, national, regional, and local levels regarding vestibular assessment and its relation to traumatic brain injuries, cochlear implantation, pediatric vestibular assessment, BPPV, and interdisciplinary approaches to dizziness. He is a current member of the American Balance Society and serves on several Editorial Boards for peer review.

Devin L. McCaslin, PhD

Devin McCaslin is the Director of the Vestibular and Balance Program at Mayo Clinic in Rochester Minnesota. He has authored and coauthored publications that cover the areas of tinnitus, dizziness, auditory function, and outcome measures development. He is also the author of the textbook VNG/ENG (Plural). Dr. McCaslin's major academic, clinical and research interests relate to clinical electrophysiology, tinnitus, and vestibular assessment and management. He is currently a co-principal investigator on a National Institute on Deafness and Other Communication Disorders funded grant investigating the high frequency aspects of vestibular function. Dr. McCaslin has served on the American Balance Society Board of Directors, American Academy of Audiology Board of Directors, and is the past president of the American Balance Society. He currently serves as the Deputy Editor-in-Chief of the Journal of the American Academy of Audiology, sits on the American Auditory Society Board of Directors.

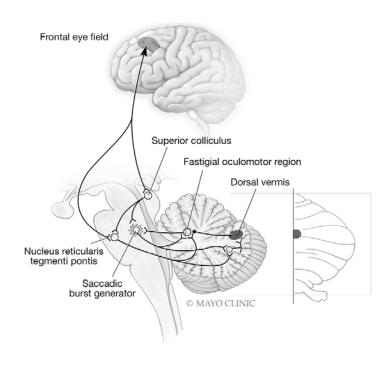
Presenter Disclosure:

- Steven Doettl: Financial: Steven Doettl received an honorarium for this presentation. Non-financial: Steven Doettl has no relevant non-financial relationships to disclose.
- Devin McCaslin: Financial: Devin McCaslin is employed by Mayo Clinic. He received an honorarium for this presentation. Non-financial: Devin McCaslin has no relevant non-financial relationships to disclose.
- Content Disclosure: This learning event does not focus exclusively on any specific product or service.
- Sponsor Disclosure: This course is presented by AudiologyOnline.

Learning Outcomes

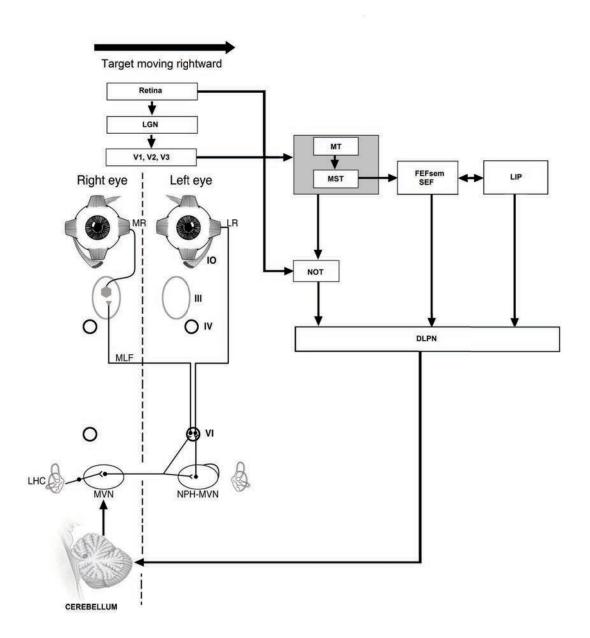
- After this course, participants will be able to
 - Describe oculomotor physiologic correlates.
 - Explain oculomotor research involving the pediatric population.
 - Explain how to use adaptation techniques in the application of oculomotor function testing in pediatrics.

Eye Movements that Move the Fovea onto a Target


- Saccades
- Smooth pursuit
- Vergence

Neural Subtstrates of Oculomotor Function (Saccades)

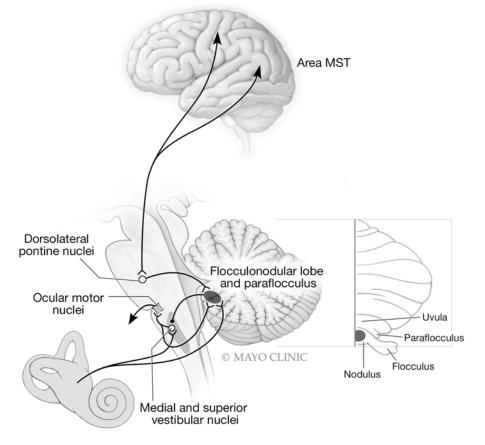
 When a target is detected on the edge of the visual field, the OMS can quickly move the eyes in a conjugate manner and bring the image of interest onto the foveae.



Neural Subtstrates of Oculomotor Function (Pursuit)

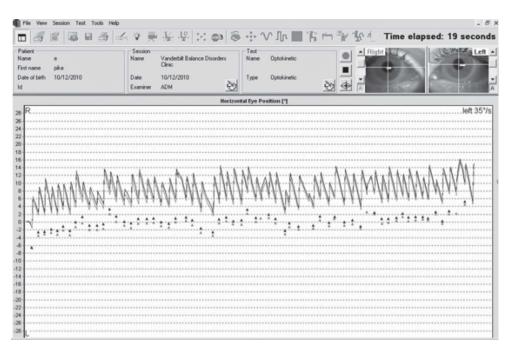
- The pursuit system is a voluntary oculomotor control system that enables an observer to hold the foveae on a target that is moving slowly (<70° per second).
- The primary purpose of this system is to keep slow moving images stabilized on the foveae when the target is moving and the head is stable.

Eye Movements that Keep the Fovea Fixed on a Target


- Gaze
- Optokinetic
- Vestibulo-ocular reflex

Neural Subtstrates of Oculomotor Function (Gaze)

 Gaze-holding describes the function of holding the foveae motionless on a target in the primary position or eccentric (deviated) position



Neural Subtstrates of Oculomotor Function (OPK)

 The optokinetic (OKN) system is a reflexive functional class of eye movement that works in concert with the vestibular system to stabilize a moving visual environment on the retina when the head is stationary.

Oculomotor Testing In Children

- Oculomotor function as described previously demonstrates significant age effects associated with noted development of specific neural substrates including:
- Superior Colliculus
- Frontal lobes
- Parietal lobes
- Thalamus
- Basal ganglia
- Cerebellum

Oculomotor Testing In Children

- Well-established that oculomotor (smooth pursuit, saccade, optokinetic, gaze and spontaneous) development occurs throughout childhood and even into adulthood.
 - Kowler & Martins, 1982; Salman, Sharpe, Lillikas, Dennis, & Steinbach, 2006; Rutsche, Baumann, Jing, & Mojon 2005; Klein & Foerster, 2001; Fukushima, Hatta, & Fukushima, 2000; Yang, Bucci, Kapoula, 2002; D'Agostino, Melagrana, Pasquale, & Taborelli, 1997; Lewis & Maurer, 2005; Kenyon, 1988; Levens, 1988; Aring, Gronlund, Hellstrom, & Ygge, 2007; Paus, Babenko, & Radil, 1990

Oculomotor Testing In Children

- However, current data is research oriented
 - Research protocols vs standard clinical protocols
 - Different measurement protocols
 - Head fixation and eye position (relative to the target)
 - Target Characteristics
 - Size, shape, color, and meaning
 - Analysis techniques
 - Extraction and interpolation

VNG-Based Research

- Doettl, S. M., Plyler, P. N., McCaslin, D. L., & Schay, N. L. (2015).
 - 63 Subjects
 - Group 1 = 30 4-6 year olds (youngest testable) population)
 - 13 4 year olds
 - 7 5 year olds
 - 9 6 year olds
 - Average age of 4.86 years
 - Group 2 = 33 21-60 year olds
 - Average age of 25.2 years

VNG-Based Research

- Visual screening prior to evaluation using the 10ft. Snellen Letter or Picture Chart
- All subjects with no history of significant visual, vestibular, or neurologic pathology
- Standard (default clinical protocols) oculomotor assessment using Synapsis VNG2 Ulmer system

Saccades

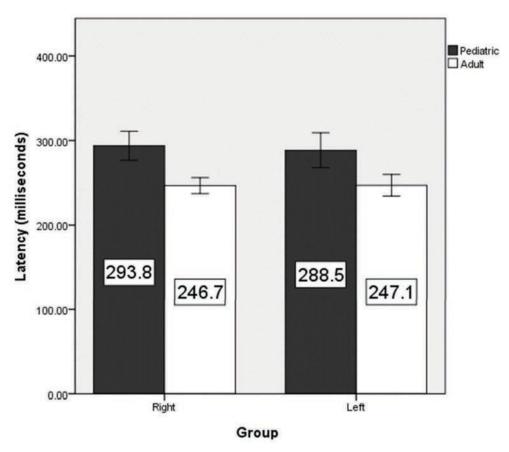


Figure 1. Mean saccade latency values for the right and left directons for the pediatric and adult groups. Standard error bars are noted.

Smooth Pursuit

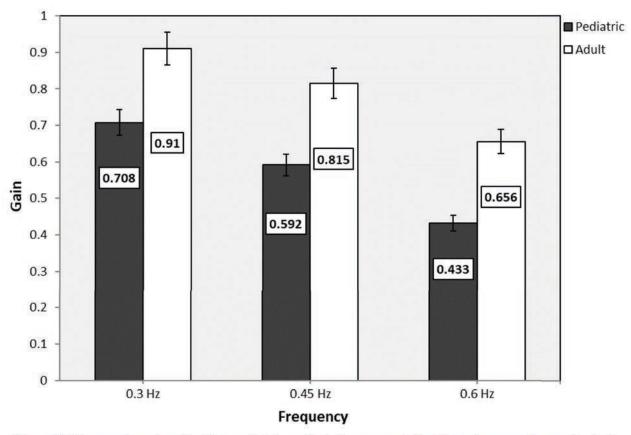


Figure 2 Mean gain values for the pediatric and adult groups at the three frequencies evaluated. Standard error bars are noted.17

Smooth Pursuit

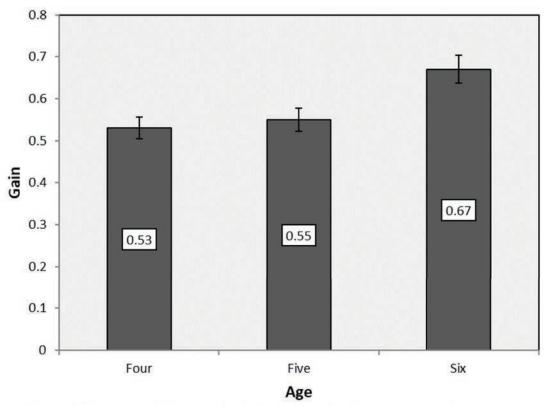
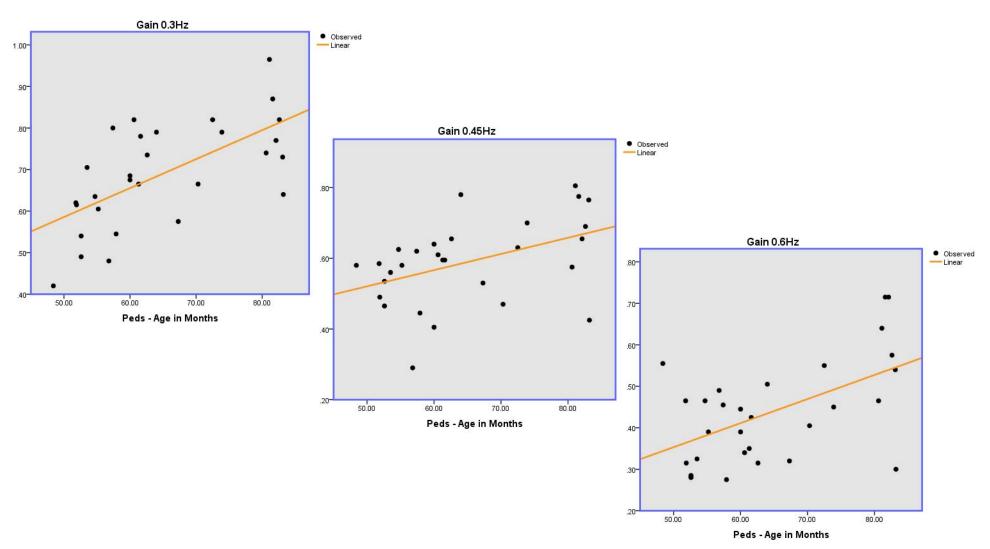
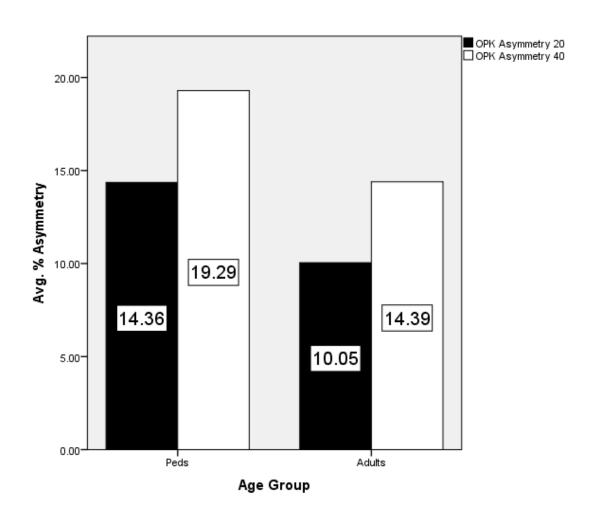
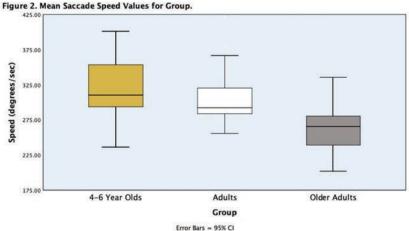



Figure 3 Mean smooth pursuit gain for the pediatric group in age in years averaged for frequency. Standard error bars are noted.17



Smooth Pursuit



Additional Data

Doettl et al (data in preparation for submission)

- Older Adults Ages 61-90 years
- Adults Ages 21-60 years
- Pediatrics Ages 4-6 years
 - Latency
 - Adults and pediatrics were significantly different
 - Adults and older adults were significantly different
 - ***Pediatrics and older adults were NOT statistically different

Additional Data

- Doettl et al (data in preparation for submission)
 - Smooth Pursuit
 - 0.3
 - Pediatric, adult, and older adult groups are all statistically significant
 - 0.45
 - Pediatric, adult, and older adult groups are all statistically significant
 - 0.6
 - Pediatric group is statistically significant compared to adults and older adults

Table 5. One-way Multiple Analysis of Variance Results for Smooth Pursuit Gain for Age Group

	Gain Values				
Group	0.3 Hz (sd)	0.45 Hz(sd) 0.59(0.11) 0.82(0.07)		0.6 Hz (sd) 0.43(0.11) 0.66(0.10)	
Pediatric	0.71(0.12)				
Adult	0.91(0.05)				
Older Adult	0.82(0.13)	0.72(0.15)		0.61(0.19)	
	F	df	р	partial η ²	Ω
Group (Pillai's Trace)	10.137	6,158	<0.001*	0.278	1.000

^{*}p < .05

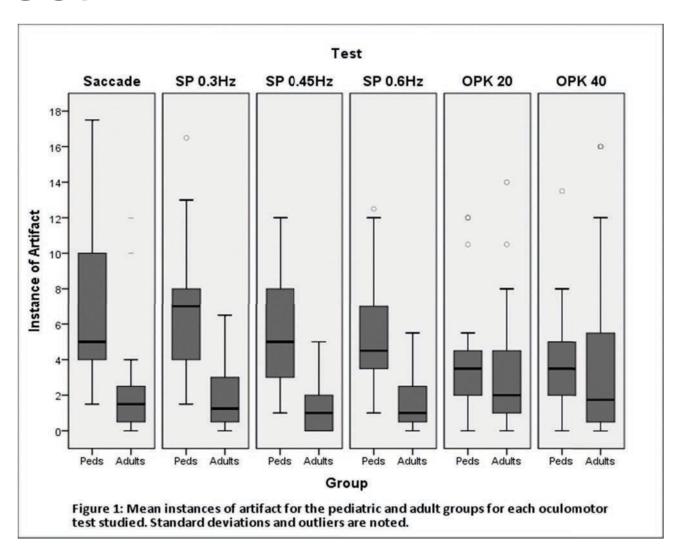
Other Findings

- No significant differences were noted for:
- Saccade
 - Velocity
 - Accuracy/Precision
- OPK
 - SPV
 - Gain

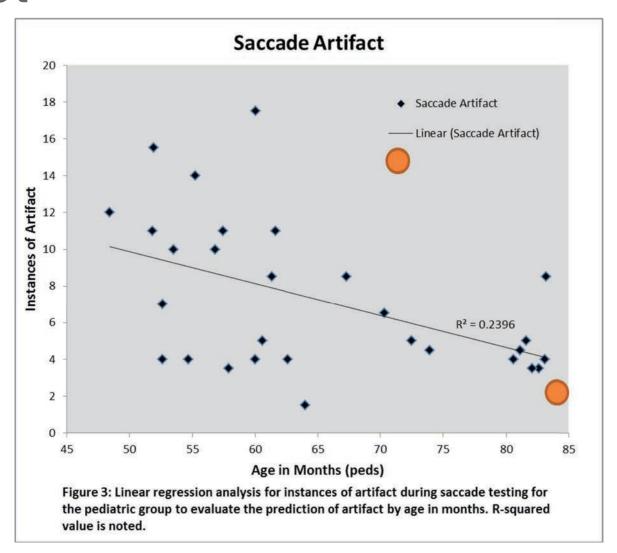
However, some other interesting differences were noted.....

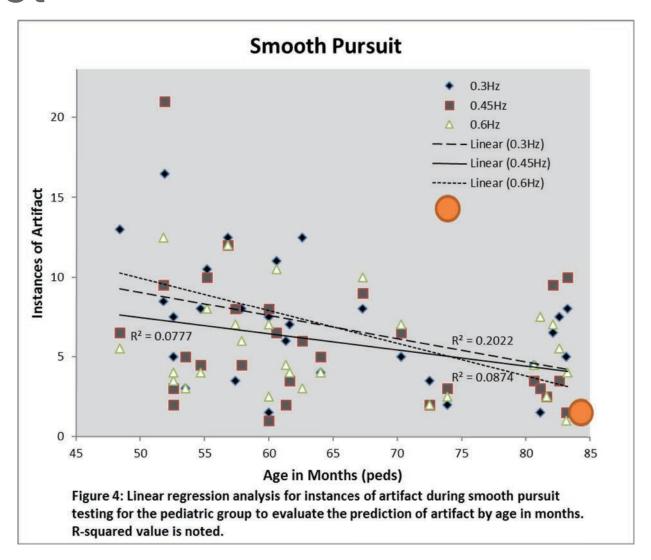
- Potential Errors (Stockwell, 1983)
 - inattention
 - movement of the eye away from the visual target
 - eye blinks
 - calibration errors
 - head movement during
 - testing
 - ENG electrical
 - interference
 - VNG tracking problems

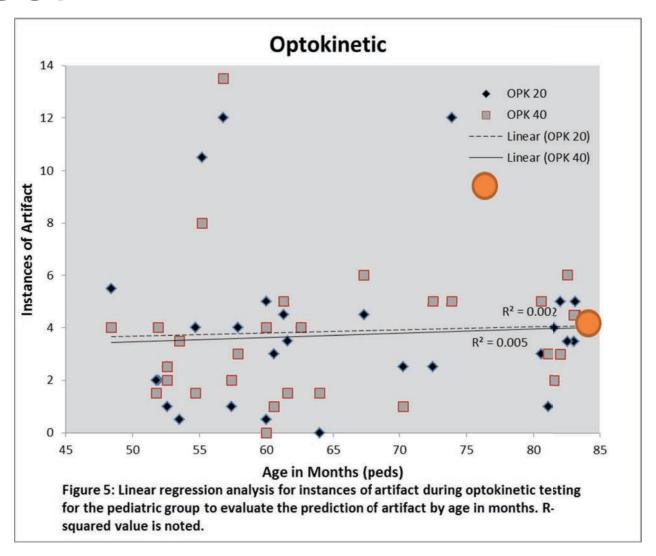
- Fukushima, Hatta, and Fukushima, 2000
 - Significantly increased errors in saccade testing in children under 7 years of age (antisaccade task)
- Klein and Foerster, 2001
 - 6-26 years increased saccade errors in younger age range
- Rutsche, Baumann, Jing, and Mojon (2006)
 - Pursuit & Saccade function in the first 6 years of life.
 - Increased attention time to the task with increasing age.

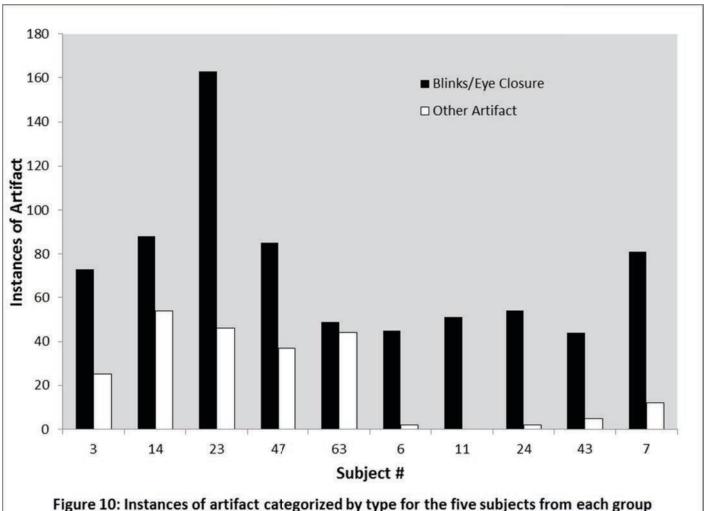
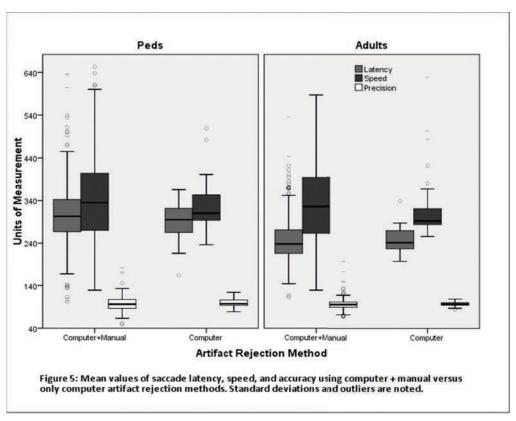


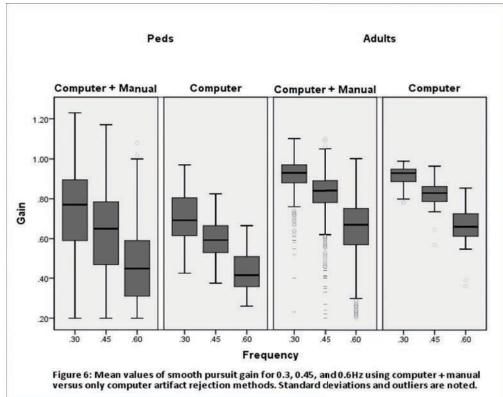
- Doettl, S. M., Plyler, P. N., & McCaslin, D. L. (2017).
 - Retrospective analysis of the oculomotor data with regard to artifact.
 - Are instances of artifact greater in children than adults during VNG oculomotor testing?
 - If there is greater artifact in children does it affect the oculomotor results?








Figure 10: Instances of artifact categorized by type for the five subjects from each group with the most artifact noted across tests and trials. Subjects 3, 14, 23, 47, and 63 were from the pediatric group. Subjects 6, 11, 25, 43, and 7 were from the adult group.

Artifact Rejection Techniques

Additional Source

- Sinno et al (2020)
- Ages 5 to 17 years
 - Saccades
 - Saccadic latency was longer in the youngest group aged 5-8 years old (305±48msec)
 - 9-11 years old (276±22msec) (P=0.017)
 - 12-14 years old (252±34msec) (P=0.001)
 - 15-17 years (256±33msec) (P=0.001).
 - Age did not affect the results of saccadic velocity and accuracy/precision.
 - Smooth Pursuit
 - Gain increased from 0.63 in children aged 5-8 years old to 0.85 in children aged 15-17 years (P=0.0001).

Summary

- Children display longer saccade latencies
 - ✓ Approaches adult values by 15-17 years
- Children display lower pursuit gain
 - ✓ Significant correlation for gain with age in months for 4-6 years
 - ✓ Significant increase in gain up to 15-17 years
- Children display larger OPK asymmetry
 - ✓ Significant difference between 4/5 years and 6 years
 - ✓ However, this is likely not clinically relevant.
- Children display increased artifact
 - ✓ Saccades and Pursuit
 - ✓ Decreased artifact with increasing age
 - ✓ Standard artifact rejections methods are sufficient.

Summary

- Suggestions for Clinical Practice
 - Be cautious
 - Especially in the youngest patients
 - Use age-specific pediatric norms where available
 - Clinic/equipment norms
 - Doettl et al, (2015) Ages 4-6
 - Sinno et al (2020) Ages 5-17
 - Consider pediatric specific visual targets
 - Pursuit especially
 - OPK is the most robust if all else fails

Questions?

References

- Aring, E., Gronlund, M.A., Hellstrom, A, & Ygge, J. (2007). Visual fixation development in children. Graefe's Archive for Clinical and Experimental Ophthalmology, 245, 1659-1665.
- Balatsouras, D.G., Kaberos, A., Assimakopoulos, D., Katotomichelakis, M., Economou, N.C., & Korres, S.G. (2007). Etiology of vertigo in children. International Journal of Pediatric Otorhinolaryngology, 71, 487-94.
- Balkany, T.J., & Finkel, R.S. (1986). The dizzy child. Ear and Hearing, 7(3), 138-42. D'Agostino, R., Melagrana, A., Pasquale, G., & Taborelli, G. (1997). The study of optokinetic "look" nystagmus in children: our experience. International Journal of Pediatric Otorhinolaryngology, 40, 141-146.
- D'Agostino, R., Tarantino, V., Melegrana, A., & Taborelli, G. (1997). Otoneurologic evaluation of child vertigo. *International Journal of* Pediatric Otorhinolaryngology, 40, 133-39.
- Doettl, S. M., Plyler, P. N., McCaslin, D. L., & Schay, N. L. (2015). Pediatric oculomotor findings during monocular videonystagmography: a developmental study. Journal of the American Academy of Audiology, 26(8), 703-715. Doettl
- Doettl, S. M., Plyler, P. N., & McCaslin, D. L. (2017). Artifact in pediatric oculomotor findings during videonystagmography: a retrospective analysis. Journal of the American Academy of Audiology, 28(4), 314-324.
- Doettl, S. M., & McCaslin, D. L. (2018, August). Contemporary Concepts in Pediatric Vestibular Assessment and Management: Oculomotor Assessment in Children. In Seminars in hearing (Vol. 39, No. 3, p. 275). Thieme Medical Publishers.
- Erbek, S.H., Erbek, S.S., Yilmaz, I., Topal, O., Ozgirgin, N., Ozluoglu, L.N., & Alehan, F. (2006). Vertigo in childhood: a clinical experience. International Journal of Pediatric Otorhinolaryngology, 70, 1547-54.
- Fukushima, J., Hatta, T., & Fukushima, K. (2000). Development of control saccadic eye movements age-related changes in normal children. Brain & Development, 22, 173-180.
- Humphriss, R.L., & Hall, A.J. (2011) Dizziness in 10 year old children: an epidemiological study. *International Journal of Pediatric* Otorhinolaryngology, 75, 395-400.
- Jacobson, G.P., & Shepard, N.T. (Eds.). (2008). Balance function assessment and management. San Diego, CA: Plural
- Katsanis, J., Iacono, W.G., & Harris, M. (1988). Development of oculomotor functioning in preadolescence, adolescence, and adulthood. Psychophysiology, 35, 64-72.

References

- Kenyon, G.S. (1988). Neuro-otological findings in normal children. Journal of the Royal Society of Medicine, 81, 644-648
- Klein, C., & Foerster, F. (2001). Development of prosaccade and antisaccade task performance in participants aged 6 to 26 years. *Psychophysiology*, 38, 179-189.
- Kowler, E., & Martins, A.J. (1982). Eye movements in children. *Science*, 215(4535), 997-999.
- Levens, S.L. (1988). Electronystagmography in normal children. British Journal of Audiology, 22, 51-56.
- Lewis, T.L., & Maurer, D. (2005). Multiple sensitive periods in human visual development: evidence from visually deprived children. *Developmental Psychobiology*, 46, 163-183.
- Niemensivu, R., Pykko, I., Weiner-Vacher, S., & Kentala, E. (2006). Vertigo and balance problems in children an epidemiologic study in finland. *International Journal of Pediatric Otorhinolaryngology*, 70, 259-265.
- Northern, J.L., & Downs, M.P. (2002). *Hearing in Children.* (5th ed.). Baltimore, MD: Lippencott.
- Paus, T., Babenko, V., & Radil, T. (1990). Development of an ability to maintain verbally instructed central gaze fixation studied in 8- to 10-year-old children. *International Journal of Psychophysiology*, 10, 53-61.
- Russell, G., & Abu-Arafeh, I. (1999). Paroxysmal vertigo in children an epidemiological study. *International Journal of Pediatric Otorhinolaryngology*, 49 (1), S105-S107.
- Rutsche, A., Baumann, A., Jiang, X., & Mojon, D. (2006). Development of visual pursuit in the first 6 years of life. *Graefe's Archives for Clinical and Experimental Ophthalmology*, 244, 1406-1411.

References

- Salman, M.S., Sharpe, J.A., Lillikas, L., Dennis, M., & Steinbach, M.J. (2006). Smooth pursuit eye movements in children. Experimental Brain Research, 169, 139-143.
- Shupert, C., & Fuchs, A.F. (1988). Development of conjugate human eye movements. Vision Research, 22(5), 585-596.
- Sinno et al. (2020). Normative values of saccades and smooth pursuit in children aged 5 to 17 years. Journal of the American Academy of Audiology. Online Epub Ahead of Print.
- Weiner-Vacher, S.R. (2008). Vestibular disorders in children. *International Journal of Audiology*, 47, 578-83.
- Yang, Q., Bucci, M., & Kapoula, Z. (2002). The latency of saccades, vergence, and combined eye movements in children and in adults. Investigational Ophthalmology and Visual Science, 43(9), 2939-2949.